1
|
Improved Tolerance of Lactiplantibacillus plantarum in the Presence of Acid by the Heterologous Expression of trxA from Oenococcus oeni. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oenococcus oeni is the main microorganism that undergoes malolactic fermentation (MLF) in the winemaking industry due to its excellent adaptability to harsh wine environments. The start of MLF is often delayed or even fails, and low pH appears to be a crucial parameter. To study the function of the trxA gene in acid stress, a plasmid containing the trxA gene of O. oeni SD-2a was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The recombinant strain (WCFS1-trxA) grew better than the control strain (WCFS1-Vector) under acid stress. The expression of thioredoxin system genes was much higher in the recombinant strain compared with the control strain under acid stress. In addition, a series of physiological and biochemical assays were conducted. The ATP content was lower in the recombinant strain, while the cell membrane fluidity and integrity improved in the recombinant strain. Moreover, reactive oxygen species (ROS) accumulation, intracellular GSH level, and superoxide dismutase (SOD) activity assays showed that the recombinant strain decreased the intracellular reactive oxygen species (ROS) accumulation by improving the SOD activity. In conclusion, heterologous expression of trxA improves the SOD activity of L. plantarum WCFS1, reducing bacterial ROS and increasing cell membrane fluidity and integrity, enhancing the tolerance of Lactiplantibacillus plantarum WCFS1 under acid stress.
Collapse
|
2
|
Liu L, Peng S, Song W, Zhao H, Li H, Wang H. Genomic Analysis of an Excellent Wine-Making Strain Oenococcus oeni SD-2a. Pol J Microbiol 2022; 71:279-292. [PMID: 35716166 PMCID: PMC9252139 DOI: 10.33073/pjm-2022-026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022] Open
Abstract
Oenococcus oeni is an important microorganism in wine-making-related engineering, and it improves wine quality and stability through malolactic fermentation. Although the genomes of more than 200 O. oeni strains have been sequenced, only a few include completed genome maps. Here, the genome sequence of O. oeni SD-2a, isolated from Shandong, China, has been determined. It is a fully assembled genome sequence of this strain. The complete genome is 1,989,703 bp with a G+C content of 37.8% without a plasmid. The genome includes almost all the essential genes involved in central metabolic pathways and the stress genes reported in other O. oeni strains. Some natural competence-related genes, like comEA, comEC, comFA, comG operon, and comFC, suggest that O. oeni SD-2a may have natural transformation potential. A comparative genomics analysis revealed 730 gene clusters in O. oeni SD-2a homologous to those in four other lactic acid bacteria species (O. oeni PSU-1, O. oeni CRBO-11381, Lactiplantibacillus plantarum UNQLp11, and Pediococcus pentosaceus KCCM40703). A collinearity analysis showed poor collinearity between O. oeni SD-2a and O. oeni PSU-1, indicating great differences in their evolutionary histories. The results provide general knowledge of O. oeni SD-2a and lay the foundation for specific gene function analyses. ![]()
Collapse
Affiliation(s)
- Longxiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuai Peng
- College of food science and engineering, Gansu Agricultural University, Lanzhou, China
| | - Weiyu Song
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
3
|
Balmaseda A, Rozès N, Bordons A, Reguant C. Molecular adaptation response of Oenococcus oeni in non-Saccharomyces fermented wines: A comparative multi-omics approach. Int J Food Microbiol 2022; 362:109490. [PMID: 34844030 DOI: 10.1016/j.ijfoodmicro.2021.109490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Oenococcus oeni is the main agent responsible for malolactic fermentation (MLF) in wine. This usually takes place in red wines after alcoholic fermentation (AF) carried out by Saccharomyces cerevisiae. In recent years, there is an increasing interest in using non-Saccharomyces yeast, usually in combination with S. cerevisiae, to improve wine quality. Current studies report a stimulatory effect of non-Saccharomyces on MLF, generally related to a decrease in the inhibitor compounds found in wine. In this work, we followed a comparative multi-omics approach, including transcriptomic and proteomic analysis, to study the molecular adaptation of O. oeni in wines fermented with Torulaspora delbrueckii and Metschnikowia pulcherrima, two of the most frequently used non-Saccharomyces, in sequential inoculation with S. cerevisiae. We compared the results to the adaptation of O. oeni in S. cerevisiae wine to determine the main changes arising from the use of non-Saccharomyces. The duration of MLF was shortened when using non-Saccharomyces, to half the time with T. delbrueckii and to a quarter with M. pulcherrima. In this work, we observed for the first time how O. oeni responds at molecular level to the changes brought about by non-Saccharomyces. We showed a differential adaptation of O. oeni in the wines studied. In this regard, the main molecular functions affected were amino acid and carbohydrate transport and metabolism, from which peptide metabolism appeared as a key feature under wine-like conditions. We also showed that the abundance of Hsp20, a well-known stress protein, depended on the duration time. Thus, the use of non-Saccharomyces reduced the abundance of Hsp20, which could mean a less stressful wine-like condition for O. oeni.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
4
|
Onetto CA, Costello PJ, Kolouchova R, Jordans C, McCarthy J, Schmidt SA. Analysis of Transcriptomic Response to SO 2 by Oenococcus oeni Growing in Continuous Culture. Microbiol Spectr 2021; 9:e0115421. [PMID: 34612664 PMCID: PMC8510247 DOI: 10.1128/spectrum.01154-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
To successfully complete malolactic fermentation (MLF), Oenococcus oeni must overcome wine stress conditions of low pH, high ethanol, and the presence of SO2. Failure to complete MLF may result in detrimental effects to the quality and stability of the resulting wines. Research efforts to date have focused on elucidating the mechanisms and genetic features that confer the ability to withstand low pH and high ethanol concentrations on O. oeni; however, the responses to SO2 stress are less well defined. This study focused on characterizing the transcriptional response of O. oeni to SO2 challenge during cultivation in a continuous system at wine-like pH (3.5). This experimental design allowed the precise discrimination of transcriptional changes linked to SO2 stress from responses associated with growth stage and cultivation parameters. Differential gene expression analysis revealed major transcriptional changes following SO2 exposure and suggested that this compound primarily interacts with intracellular proteins, DNA, and the cell envelope of O. oeni. The molecular chaperone hsp20, which has a demonstrated function in the heat, ethanol, and acid stress response, was highly upregulated, confirming its additional role in the response of this species to SO2 stress. This work also reports the first nanopore-based complete genome assemblies for O. oeni. IMPORTANCE Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni, a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO2, an antiseptic and antioxidant compound regularly used in winemaking. Understanding the physiological changes induced in O. oeni by SO2 stress is essential for the development of more robust starter cultures and methods for their use. This study describes the main transcriptional changes induced by SO2 stress in the wine bacterium O. oeni and provides foundational understanding on how this compound interacts with the cellular components and the induced protective mechanisms of this species.
Collapse
Affiliation(s)
- Cristobal A. Onetto
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Peter J. Costello
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Radka Kolouchova
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Charlotte Jordans
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Jane McCarthy
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Simon A. Schmidt
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| |
Collapse
|
5
|
Yang K, Dai X, Fan M, Zhang G. Influences of acid and ethanol stresses on Oenococcus oeni SD-2a and its proteomic and transcriptional responses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2892-2900. [PMID: 33159330 DOI: 10.1002/jsfa.10921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND During winemaking, malolactic fermentation (MLF) is usually induced by Oenococcus oeni owing to its high resistance to wine stress factors. To ensure a controlled and efficient MLF process, starter cultures are inoculated in wine. In previous studies, O. oeni strains with sub-lethal acid or ethanol stresses showed higher freeze-drying vitality and better MLF performance. To explore the mechanisms involved, influences of acid and ethanol stresses on O. oeni SD-2a were investigated in this study to gain a better understanding of the cross-protection responses. RESULTS The results showed that acid and ethanol stresses both caused damage to cell membranes and decreased cellular adenosine triphosphate concentration. At the same time, acid stress increased the uptake of glutathione, while ethanol stress led to cell depolarization. The results of comparative proteomic analysis highlighted that heat shock protein was induced with almost all acid and ethanol stresses. In addition, the expression of stress-relevant genes (hsp20, clpP, trxA, ctsR, recO, usp) increased greatly with ethanol and acid stress treatments. Finally, the viability of O. oeni was improved with acid and ethanol pretreatments after freeze-drying. CONCLUSIONS This study demonstrated that acid and ethanol stresses had mixed influences on O. oeni SD-2a. Some physiological and molecular changes would contribute to a more stress-tolerant state of O. oeni, thereby improving the viability of lyophilized cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
6
|
Genome Sequence of Oenococcus oeni OE37, an Autochthonous Strain Isolated from an Italian White Wine. Microbiol Resour Announc 2020; 9:9/39/e00582-20. [PMID: 32972928 PMCID: PMC7516139 DOI: 10.1128/mra.00582-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oenococcus oeni OE37 is an autochthonous strain that was isolated from a Chardonnay wine from Piedmont (Italy) during spontaneous malolactic fermentation. Here, the OE37 genome sequence is presented, and a brief description of the main genes is reported. Oenococcus oeni OE37 is an autochthonous strain that was isolated from a Chardonnay wine from Piedmont (Italy) during spontaneous malolactic fermentation. Here, the OE37 genome sequence is presented, and a brief description of the main genes is reported.
Collapse
|
7
|
Yang K, Liu M, Yang J, Wei X, Fan M, Zhang G. Physiological and proteomic responses of freeze-dried Oenococcus oeni SD-2a with ethanol-acclimations. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Russo P, Englezos V, Capozzi V, Pollon M, Río Segade S, Rantsiou K, Spano G, Cocolin L. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation. Food Res Int 2020; 134:109246. [PMID: 32517918 DOI: 10.1016/j.foodres.2020.109246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023]
Abstract
This work aims to improve the management of the malolactic fermentation (MLF) in red wines by elucidating the interactions between Starmerella bacillaris and Saccharomyces cerevisiae in mixed fermentations and malolactic bacteria. Two Starm. bacillaris strains were individually used in mixed fermentations with a commercial S. cerevisiae. MLF was performed using two autochthonous Lactobacillus plantarum and one commercial Oenococcus oeni inoculated following a simultaneous (together with S. cerevisiae) or sequential (at the end of alcoholic fermentation) approach. The impact of yeast inoculation on the progress of MLF was investigated by monitoring the viable microbial populations and the evolution of the main oenological parameters, as well as the volatile organic composition of the wines obtained in mixed and pure micro-scale winemaking trials. Our results indicated that MLF was stimulated, inhibited, or unaffected in mixed fermentations depending on the strains and on the regime of inoculation. O. oeni was able to perform MLF under all experimental conditions, and it showed a minimal impact on the volatile organic compounds of the wine. L. plantarum was unable to perform MLF in sequential inoculation assays, and strain-depending interactions with Starm. bacillaris were indicated as factor affecting the outcome of MLF. Moreover, uncompleted MLF were related to a lower aromatic complexity of the wines. Our evidences indicate that tailored studies are needed to define the appropriate management of non-Saccharomyces and malolactic starter cultures in order to optimize some technological parameters (i.e. reduction of vinification time) and to improve qualitative features (i.e. primary and secondary metabolites production) of red wines.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Vasileios Englezos
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Matteo Pollon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
9
|
Yang K, Zhu Y, Qi Y, Zhang T, Liu M, Zhang J, Wei X, Fan M, Zhang G. Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance. Food Chem 2019; 285:441-449. [PMID: 30797368 DOI: 10.1016/j.foodchem.2019.01.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/24/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Malolactic fermentation (MLF), usually induced by Oenococcus oeni (O. oeni), is an important process to improve wine quality. Acid acclimation has been proven to be useful for enhancing the viability of lyophilized O. oeni. To explain the involved mechanisms, cell integrity, morphology and protein patterns of lyophilized O. oeni SD-2a were investigated with acid acclimation. After lyophilization, improvement of cell integrity and more extracellular polymeric substances (EPS) were observed in acid acclimated cells. Combined with GO and KEGG analysis, different abundant proteins were noticeably enriched in the carbohydrate metabolism process, especially amino sugar and nucleotide sugar metabolism. The most significant result was the over-expression of proteins participating in cell wall biosynthesis, EPS production, ATP binding and the bacterial secretion system. This result indicated the important role of acid acclimation on cell envelope properties. In addition, protein response to stress and arginine deiminase pathway were also proven to be over-expressed.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China; College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yang Zhu
- School of Agriculture and Food Sciences, University of Queensland, QLD 4046, Australia
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Tingjing Zhang
- College of Food Science and Technology, Henan University of Technology, Zhenzhou 450001, China
| | - Miaomiao Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
10
|
Relative expression of stress-related genes during acclimation at low temperature of psychrotrophic Oenococcus oeni strains from Patagonian wine. World J Microbiol Biotechnol 2018; 35:5. [DOI: 10.1007/s11274-018-2577-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
11
|
Fernández-Pérez R, Tenorio Rodríguez C, Ruiz-Larrea F. Fluorescence microscopy to monitor wine malolactic fermentation. Food Chem 2018; 274:228-233. [PMID: 30372931 DOI: 10.1016/j.foodchem.2018.08.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
Malolactic fermentation (MLF) is a natural and biological deacidification of wines and a required step for making premium red wines. MLF is carried out by lactic acid bacteria (LAB) that are present in the fermenting wines. Currently, real-time control of MLF is an issue of great interest as the classical plate count technique for assessing bacterial populations requires long incubation times that are not compatible with a tight control of MLF. The aim of this study was to apply fluorescence microscopy and the bacteria staining kit Live/Dead BacLight™ to quantify viable LAB populations in red wines undergoing MLF. This method proved to be a fast and reliable culture-independent method to monitor wine MLF. Moreover, comparison of bacterial population data obtained by fluorescence microscopy and classical plate counts of LAB populations allowed discriminating a population of fully active and culturable cells, from total viable cells that include cells in an intermediate unculturable state.
Collapse
Affiliation(s)
- Rocío Fernández-Pérez
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain
| | - Carmen Tenorio Rodríguez
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain
| | - Fernanda Ruiz-Larrea
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain.
| |
Collapse
|
12
|
Bravo-Ferrada BM, Gonçalves S, Semorile L, Santos NC, Brizuela NS, Elizabeth Tymczyszyn E, Hollmann A. Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine. Cryobiology 2018; 82:15-21. [DOI: 10.1016/j.cryobiol.2018.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
13
|
Bonomo MG, Di Tomaso K, Calabrone L, Salzano G. Ethanol stress in Oenococcus oeni: transcriptional response and complex physiological mechanisms. J Appl Microbiol 2018; 125:2-15. [PMID: 29377375 DOI: 10.1111/jam.13711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Oenococcus oeni is the dominant species able to cope with a hostile environment of wines, comprising cumulative effects of low pH, high ethanol and SO2 content, nonoptimal growth temperatures and growth inhibitory compounds. Ethanol tolerance is a crucial feature for the activity of O. oeni cells in wine because ethanol acts as a disordering agent of its cell membrane and negatively affects metabolic activity; it damages the membrane integrity, decreases cell viability and, as other stress conditions, delays the start of malolactic fermentation with a consequent alteration of wine quality. The cell wall, cytoplasmic membrane and metabolic pathways are the main sites involved in physiological changes aimed to ensure an adequate adaptive response to ethanol stress and to face the oxidative damage caused by increasing production of reactive oxygen species. Improving our understanding of the cellular impact of ethanol toxicity and how the cell responds to ethanol stress can facilitate the development of strategies to enhance microbial ethanol tolerance; this allows to perform a multidisciplinary endeavour requiring not only an ecological study of the spontaneous process but also the characterization of useful technological and physiological features of the predominant strains in order to select those with the highest potential for industrial applications.
Collapse
Affiliation(s)
- M G Bonomo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - K Di Tomaso
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy.,Ph.D School in Applied and Environmental Safeguard, Università degli Studi della Basilicata, Potenza, Italy
| | - L Calabrone
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - G Salzano
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
14
|
Contreras A, Ribbeck M, Gutiérrez GD, Cañon PM, Mendoza SN, Agosin E. Mapping the Physiological Response of Oenococcus oeni to Ethanol Stress Using an Extended Genome-Scale Metabolic Model. Front Microbiol 2018; 9:291. [PMID: 29545779 PMCID: PMC5838312 DOI: 10.3389/fmicb.2018.00291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
The effect of ethanol on the metabolism of Oenococcus oeni, the bacterium responsible for the malolactic fermentation (MLF) of wine, is still scarcely understood. Here, we characterized the global metabolic response in O. oeni PSU-1 to increasing ethanol contents, ranging from 0 to 12% (v/v). We first optimized a wine-like, defined culture medium, MaxOeno, to allow sufficient bacterial growth to be able to quantitate different metabolites in batch cultures of O. oeni. Then, taking advantage of the recently reconstructed genome-scale metabolic model iSM454 for O. oeni PSU-1 and the resulting experimental data, we determined the redistribution of intracellular metabolic fluxes, under the different ethanol conditions. Four growth phases were clearly identified during the batch cultivation of O. oeni PSU-1 strain, according to the temporal consumption of malic and citric acids, sugar and amino acids uptake, and biosynthesis rates of metabolic products - biomass, erythritol, mannitol and acetic acid, among others. We showed that, under increasing ethanol conditions, O. oeni favors anabolic reactions related with cell maintenance, as the requirements of NAD(P)+ and ATP increased with ethanol content. Specifically, cultures containing 9 and 12% ethanol required 10 and 17 times more NGAM (non-growth associated maintenance ATP) during phase I, respectively, than cultures without ethanol. MLF and citric acid consumption are vital at high ethanol concentrations, as they are the main source for proton extrusion, allowing higher ATP production by F0F1-ATPase, the main route of ATP synthesis under these conditions. Mannitol and erythritol synthesis are the main sources of NAD(P)+, countervailing for 51-57% of its usage, as predicted by the model. Finally, cysteine shows the fastest specific consumption rate among the amino acids, confirming its key role for bacterial survival under ethanol stress. As a whole, this study provides a global insight into how ethanol content exerts a differential physiological response in O. oeni PSU-1 strain. It will help to design better strategies of nutrient addition to achieve a successful MLF of wine.
Collapse
Affiliation(s)
- Angela Contreras
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Ribbeck
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo D Gutiérrez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo M Cañon
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Margalef-Català M, Felis GE, Reguant C, Stefanelli E, Torriani S, Bordons A. Identification of variable genomic regions related to stress response in Oenococcus oeni. Food Res Int 2017; 102:625-638. [PMID: 29195994 DOI: 10.1016/j.foodres.2017.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
Abstract
The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Giovanna E Felis
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Elena Stefanelli
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
16
|
Sternes PR, Costello PJ, Chambers PJ, Bartowsky EJ, Borneman AR. Whole transcriptome RNAseq analysis of Oenococcus oeni reveals distinct intra-specific expression patterns during malolactic fermentation, including genes involved in diacetyl metabolism. Int J Food Microbiol 2017; 257:216-224. [DOI: 10.1016/j.ijfoodmicro.2017.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/25/2017] [Indexed: 12/23/2022]
|
17
|
Liu L, Zhao H, Peng S, Wang T, Su J, Liang Y, Li H, Wang H. Transcriptomic Analysis of Oenococcus oeni SD-2a Response to Acid Shock by RNA-Seq. Front Microbiol 2017; 8:1586. [PMID: 28878748 PMCID: PMC5572241 DOI: 10.3389/fmicb.2017.01586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Oenococcus oeni can be applied to conduct malolactic fermentation (MLF), but also is the main species growing naturally in wine. Due to the high stress tolerance, it is an interesting model for investigating acid response mechanisms. In this study, the changes in the transcriptome of O.oeni SD-2a during the adaptation period have been studied. RNA-seq was introduced for the transcriptomic analysis of O. oeni samples treated with pH 4.8 and pH 3.0 at 0 and 1 h, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) were performed to compare the transcriptome data between different treatments. From GO analysis, the majority of differentially expressed genes (DEGs) (pH 3.0_1 h-VS-pH 4.8_1 h, pH 3.0_1 h-VS-pH 4.8_0 h, and pH 4.8_1 h-VS-pH 4.8_0 h) were found to be involved in the metabolic process, catalytic activity, cellular process, and binding. KEGG analysis reveals that the most functional gene categories affected by acid are membrane transport, amino acid metabolism and carbohydrate metabolism. Some genes, like the heat shock protein Hsp20, malate transporter and malate permease, were also over-expressed in response to acid stress. In addition, a considerable proportion of gene indicate a significantly different expression in this study, are novel, which needs to be investigated further. These results provide a new viewpoint and crucial resource on the acid stress response in O. oeni.
Collapse
Affiliation(s)
- Longxiang Liu
- College of Enology, Northwest A&F UniversityYangling, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F UniversityYangling, China
| | - Shuai Peng
- College of Enology, Northwest A&F UniversityYangling, China
| | - Tao Wang
- College of Enology, Northwest A&F UniversityYangling, China.,College of Bioengineering, Sichuan University of Science and EngineeringZigong, China
| | - Jing Su
- College of Enology, Northwest A&F UniversityYangling, China.,College of Food Science and Engineering, Shanxi Agricultural UniversityTaigu, China
| | - Yanying Liang
- College of Enology, Northwest A&F UniversityYangling, China
| | - Hua Li
- College of Enology, Northwest A&F UniversityYangling, China.,Shaanxi Engineering Research Center for Viti-VinicultureYangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F UniversityWeinan, China
| | - Hua Wang
- College of Enology, Northwest A&F UniversityYangling, China.,Shaanxi Engineering Research Center for Viti-VinicultureYangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F UniversityWeinan, China
| |
Collapse
|
18
|
Yang X, Teng K, Zhang J, Wang F, Zhang T, Ai G, Han P, Bai F, Zhong J. Transcriptome responses of Lactobacillus acetotolerans F28 to a short and long term ethanol stress. Sci Rep 2017; 7:2650. [PMID: 28572611 PMCID: PMC5453994 DOI: 10.1038/s41598-017-02975-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Lactobacillus acetotolerans is a major microbe contributing to the Chinese liquor fermentation with unknown function. It can be grown well in a high concentration of ethanol. RNA sequencing (RNA-seq) was performed on L. acetotolerans F28 growing in 12% ethanol to determine important genetic mechanisms for both a short and long term adaption to this environment. A genome-wide transcriptional analysis revealed that the most important genetic elements for L. acetotolerans F28 grown in ethanol are related to high levels of stress response and fatty acid biosynthesis, and a reduction of amino acid transport and metabolism after both a short and long time stress. The fatty acid methyl ester analyses showed that most fatty acids were increased in L. acetotolerans F28 after exposure to ethanol while the unsaturated fatty acid octadecenoic acid (C18:1) was significantly increased. The increasing unsaturated fatty acid biosynthesis in L. acetotolerans F28 might enhance cell membrane fluidity and protect the cells against high concentration of ethanol. Overall, the transcriptome and functional analysis indicated that the elevated stress response and fatty acid biosynthesis, and the decrease of amino acid transport and metabolism might play important roles for L. acetotolerans F28 to adapt to environmental ethanol.
Collapse
Affiliation(s)
- Xiaopan Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Fangfang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Peijie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Fengyan Bai
- University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
19
|
Costantini A, Doria F, Saiz JC, Garcia-Moruno E. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine. Int J Food Microbiol 2017; 246:12-19. [DOI: 10.1016/j.ijfoodmicro.2017.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 11/26/2022]
|
20
|
Mendoza SN, Cañón PM, Contreras Á, Ribbeck M, Agosín E. Genome-Scale Reconstruction of the Metabolic Network in Oenococcus oeni to Assess Wine Malolactic Fermentation. Front Microbiol 2017; 8:534. [PMID: 28424673 PMCID: PMC5372704 DOI: 10.3389/fmicb.2017.00534] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 11/21/2022] Open
Abstract
Oenococcus oeni is the main responsible agent for malolactic fermentation in wine, an unpredictable and erratic process in winemaking. To address this, we have constructed and exhaustively curated the first genome-scale metabolic model of Oenococcus oeni, comprising 660 reactions, 536 metabolites and 454 genes. In silico experiments revealed that nutritional requirements are predicted with an accuracy of 93%, while 14 amino acids were found to be essential for the growth of this bacterial species. When the model was applied to determine the non-growth associated maintenance, results showed that O. oeni grown at 12% ethanol concentration spent 30 times more ATP to stay alive than in the absence of ethanol. Most of this ATP is employed for extruding protons outside of the cell. A positive relationship was also found between specific consumption rates of fructose, amino acids, oxygen, and malic acid and the specific production rates of erythritol, lactate, and acetate, according to the ethanol content of the medium. The metabolic model reconstructed here represents a unique tool to predict the successful completion of wine malolactic fermentation carried out either by different strains of Oenococcus oeni, as well as at any particular physico-chemical composition of wine. It will also allow the development of consortium metabolic models that could be applied to winemaking to simulate and understand the interactions between O. oeni and other microorganisms that share this ecological niche.
Collapse
Affiliation(s)
- Sebastián N Mendoza
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Pablo M Cañón
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ángela Contreras
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Magdalena Ribbeck
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Eduardo Agosín
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
21
|
Protective role of glutathione addition against wine-related stress in Oenococcus oeni. Food Res Int 2016; 90:8-15. [DOI: 10.1016/j.foodres.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
|
22
|
Margalef-Català M, Araque I, Bordons A, Reguant C, Bautista-Gallego J. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions. Front Microbiol 2016; 7:1554. [PMID: 27746771 PMCID: PMC5044463 DOI: 10.3389/fmicb.2016.01554] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Isabel Araque
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Joaquín Bautista-Gallego
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
23
|
Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiol (Praha) 2016; 61:365-73. [DOI: 10.1007/s12223-016-0446-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/12/2016] [Indexed: 11/27/2022]
|