1
|
Ding X, Zheng Z, Zhao G, Wang L, Wang H, Wang P. Adaptive laboratory evolution for improved tolerance of vitamin K in Bacillus subtilis. Appl Microbiol Biotechnol 2024; 108:75. [PMID: 38194140 DOI: 10.1007/s00253-023-12877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024]
Abstract
Menaquinone-7 (MK-7), a subtype of vitamin K2 (VK2), assumes crucial roles in coagulation function, calcium homeostasis, and respiratory chain transmission. The production of MK-7 via microbial fermentation boasts mild technological conditions and high biocompatibility. Nevertheless, the redox activity of MK-7 imposes constraints on its excessive accumulation in microorganisms. To address this predicament, an adaptive laboratory evolution (ALE) protocol was implemented in Bacillus subtilis BS011, utilizing vitamin K3 (VK3) as a structural analog of MK-7. The resulting strain, BS012, exhibited heightened tolerance to high VK3 concentrations and demonstrated substantial enhancements in biofilm formation and total antioxidant capacity (T-AOC) when compared to BS011. Furthermore, MK-7 production in BS012 exceeded that of BS011 by 76% and 22% under static and shaking cultivation conditions, respectively. The molecular basis underlying the superior performance of BS012 was elucidated through genome and transcriptome analyses, encompassing observations of alterations in cell morphology, variations in central carbon and nitrogen metabolism, spore formation, and antioxidant systems. In summation, ALE technology can notably enhance the tolerance of B. subtilis to VK and increase MK-7 production, thus offering a theoretical framework for the microbial fermentation production of other VK2 subtypes. Additionally, the evolved strain BS012 can be developed for integration into probiotic formulations within the food industry to maintain intestinal flora homeostasis, mitigate osteoporosis risk, and reduce the incidence of cardiovascular disease. KEY POINTS: • Bacillus subtilis was evolved for improved vitamin K tolerance and menaquinone-7 (MK-7) production • Evolved strains formed wrinkled biofilms and elongated almost twofold in length • Evolved strains induced sporulation to improve tolerance when carbon was limited.
Collapse
Affiliation(s)
- Xiumin Ding
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, China
- University of Science and Technology of China, Hefei, China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
2
|
Mao C, Zheng H, Chen Y, Yuan P, Sun D. Development of a Type I-E CRISPR-Based Programmable Repression System for Fine-Tuning Metabolic Flux toward D-Pantothenic Acid in Bacillus subtilis. ACS Synth Biol 2024; 13:2480-2491. [PMID: 39083228 DOI: 10.1021/acssynbio.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The CRISPR-based regulation tools enable fine-tuning of gene transcription, showing potential in areas of biomanufacturing and live therapeutics. However, the cell toxicity and PAM specificity of existing CRISPR-based regulation systems limit their broad application. The development of new and less-toxic CRISPR-controlled expression systems remains highly desirable for expanding the application scope of CRISPR-based tools. Here, we reconstituted the type I CRISPR-Cas system from Escherichia coli to finely tune gene expression in Bacillus subtilis. Through engineering the 5' untranslated region (UTR) of mRNAs of cas genes, we remarkably improved the efficacy of the type I CRISPRi system. The improved type I CRISPRi system was applied in engineering the D-pantothenic acid (DPA)-producing B. subtilis, which was generated by strengthening the metabolic flux toward β-alanine and (R)-pantoate via enhancing expression of key enzymes at both transcriptional and translational levels. Through controlling the expression of pdhA with the CRISPRi system for fine-tuning the metabolic flux toward DPA and the TCA cycle, we elevated the DPA titer to 0.88 g/L in shake flasks and 12.81 g/L in fed-batch fermentations without the addition of the precursor β-alanine. The type I CRISPRi system and the strategy for fine-tuning metabolic flux reported here not only enrich the CRISPR toolbox in B. subtilis and facilitate DPA production through microbial fermentation but also provide a paradigm for programming important organisms to produce value-added chemicals with cheap raw materials.
Collapse
Affiliation(s)
- Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Han Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yifeng Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Wang X, Sun B. Metabolic proteins with crucial roles in Edwardsiella tarda antioxidative adaptation and intracellular proliferation. mSystems 2023; 8:e0039123. [PMID: 37729581 PMCID: PMC10654080 DOI: 10.1128/msystems.00391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Edwardsiella tarda is a significant fish pathogen that can live in challenging environments of reactive oxygen species (ROS), such as inside the phagocytes. Metabolic reconfiguration has been increasingly associated with bacterial oxidative tolerance and virulence. However, the metabolic proteins of E. tarda involved in such processes remain elusive. By proteomic analysis and functional characterization of protein null mutants, the present study identified eight crucial proteins for bacterial oxidative resistance and intracellular infection. Seven of them are metabolic proteins dictating the metabolic flux toward the generation of pyruvate, a key metabolite capable of scavenging ROS molecules. Furthermore, L-aspartate uptake, which can fuel the pyruvate generation, was found essential for the full antioxidative capacity of E. tarda. These findings identified seven metabolic proteins involved in bacterial oxidative adaptation and indicate that metabolic reprogramming toward pyruvate was likely a pivotal strategy of bacteria for antioxidative adaptation and intracellular survival.
Collapse
Affiliation(s)
- Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Wang S, Zhao C, Xue B, Li C, Zhang X, Yang X, Li Y, Yang Y, Shen Z, Wang J, Qiu Z. Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129198. [PMID: 35739728 DOI: 10.1016/j.jhazmat.2022.129198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure.
Collapse
Affiliation(s)
- Shang Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanping Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
5
|
Mortimer M, Wang Y, Holden PA. Molecular Mechanisms of Nanomaterial-Bacterial Interactions Revealed by Omics-The Role of Nanomaterial Effect Level. Front Bioeng Biotechnol 2021; 9:683520. [PMID: 34195180 PMCID: PMC8236600 DOI: 10.3389/fbioe.2021.683520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology is employed across a wide range of antibacterial applications in clinical settings, food, pharmaceutical and textile industries, water treatment and consumer goods. Depending on type and concentration, engineered nanomaterials (ENMs) can also benefit bacteria in myriad contexts including within the human body, in biotechnology, environmental bioremediation, wastewater treatment, and agriculture. However, to realize the full potential of nanotechnology across broad applications, it is necessary to understand conditions and mechanisms of detrimental or beneficial effects of ENMs to bacteria. To study ENM effects, bacterial population growth or viability are commonly assessed. However, such endpoints alone may be insufficiently sensitive to fully probe ENM effects on bacterial physiology. To reveal more thoroughly how bacteria respond to ENMs, molecular-level omics methods such as transcriptomics, proteomics, and metabolomics are required. Because omics methods are increasingly utilized, a body of literature exists from which to synthesize state-of-the-art knowledge. Here we review relevant literature regarding ENM impacts on bacterial cellular pathways obtained by transcriptomic, proteomic, and metabolomic analyses across three growth and viability effect levels: inhibitory, sub-inhibitory or stimulatory. As indicated by our analysis, a wider range of pathways are affected in bacteria at sub-inhibitory vs. inhibitory ENM effect levels, underscoring the importance of ENM exposure concentration in elucidating ENM mechanisms of action and interpreting omics results. In addition, challenges and future research directions of applying omics approaches in studying bacterial-ENM interactions are discussed.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, China
| | - Ying Wang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Eymard-Vernain E, Luche S, Rabilloud T, Lelong C. ZnO and TiO2 nanoparticles alter the ability of Bacillus subtilis to fight against a stress. PLoS One 2020; 15:e0240510. [PMID: 33045025 PMCID: PMC7549824 DOI: 10.1371/journal.pone.0240510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the physicochemical properties of nanoparticles, the use of nanomaterials increases over time in industrial and medical processes. We herein report the negative impact of nanoparticles, using solid growth conditions mimicking a biofilm, on the ability of Bacillus subtilis to fight against a stress. Bacteria have been exposed to sublethal doses of nanoparticles corresponding to conditions that bacteria may meet in their natural biotopes, the upper layer of soil or the gut microbiome. The analysis of the proteomic data obtained by shotgun mass spectrometry have shown that several metabolic pathways are affected in response to nanoparticles, n-ZnO or n-TiO2, or zinc salt: the methyglyoxal and thiol metabolisms, the oxidative stress and the stringent responses. Nanoparticles being embedded in the agar medium, these impacts are the consequence of a physiological adaptation rather than a physical cell injury. Overall, these results show that nanoparticles, by altering bacterial physiology and especially the ability to resist to a stress, may have profound influences on a “good bacteria”, Bacillus subtilis, in its natural biotope and moreover, on the global equilibrium of this biotope.
Collapse
Affiliation(s)
| | - Sylvie Luche
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Thierry Rabilloud
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Cécile Lelong
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
- * E-mail:
| |
Collapse
|
7
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
8
|
Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. J Bacteriol 2020; 202:JB.00547-19. [PMID: 31818924 DOI: 10.1128/jb.00547-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Collapse
|
9
|
Eymard-Vernain E, Coute Y, Adrait A, Rabilloud T, Sarret G, Lelong C. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles. PLoS One 2018; 13:e0197501. [PMID: 29813090 PMCID: PMC5973573 DOI: 10.1371/journal.pone.0197501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/03/2018] [Indexed: 12/03/2022] Open
Abstract
For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect.
Collapse
Affiliation(s)
- Elise Eymard-Vernain
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- ISTerre, CNRS-UGA, Grenoble, France
| | - Yohann Coute
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | - Annie Adrait
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | | | | | - Cécile Lelong
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- * E-mail:
| |
Collapse
|
10
|
Eymard-Vernain E, Luche S, Rabilloud T, Lelong C. Impact of nanoparticles on the Bacillus subtilis (3610) competence. Sci Rep 2018; 8:2978. [PMID: 29445231 PMCID: PMC5813000 DOI: 10.1038/s41598-018-21402-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Due to the physicochemical properties of nanoparticles, the use of nanomaterials increases every year in industrial and medical processes. At the same time, the increasing number of bacteria becoming resistant to many antibiotics, mostly by a horizontal gene transfer process, is a major public health concern. We herein report, for the first time, the role of nanoparticles in the physiological induction of horizontal gene transfer in bacteria. Besides the most well-known impacts of nanoparticles on bacteria, i.e. death or oxidative stress, two nanoparticles, n-ZnO and n-TiO2, significantly and oppositely impact the transformation efficiency of Bacillus subtilis in biofilm growth conditions, by modification of the physiological processes involved in the induction of competence, the first step of transformation. This effect is the consequence of a physiological adaptation rather than a physical cell injury: two oligopeptide ABC transporters, OppABCDF and AppDFABC, are differentially expressed in response to nanoparticles. Interestingly, a third tested nanoparticle, n-Ag, has no significant effect on competence in our experimental conditions. Overall, these results show that nanoparticles, by altering bacterial physiology and especially competence, may have profound influences in unsuspected areas, such as the dissemination of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Elise Eymard-Vernain
- Université Grenoble Alpes, CNRS, CEA, BIG, CBM, 17 avenue des Martyrs, 38054, Grenoble cedex 9, France
| | - Sylvie Luche
- Université Grenoble Alpes, CNRS, CEA, BIG, CBM, 17 avenue des Martyrs, 38054, Grenoble cedex 9, France
| | - Thierry Rabilloud
- Université Grenoble Alpes, CNRS, CEA, BIG, CBM, 17 avenue des Martyrs, 38054, Grenoble cedex 9, France
| | - Cécile Lelong
- Université Grenoble Alpes, CNRS, CEA, BIG, CBM, 17 avenue des Martyrs, 38054, Grenoble cedex 9, France.
| |
Collapse
|
11
|
Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, Brodersen DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem 2018; 293:3254-3264. [PMID: 29326162 DOI: 10.1074/jbc.ra117.001374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,β-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.
Collapse
Affiliation(s)
- Melek Cemre Manav
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Jelena Beljantseva
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin S Bojer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Tanel Tenson
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Hanne Ingmer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Vasili Hauryliuk
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,the Department of Molecular Biology and.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Ditlev E Brodersen
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
12
|
Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 2017; 8:64878-64891. [PMID: 29029398 PMCID: PMC5630298 DOI: 10.18632/oncotarget.17612] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/19/2017] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to determine whether low dose of zinc oxide nanoparticles (Nano-ZnO) could serve as a potential substitute of pharmacological dose of traditional ZnO in weaned piglets. 180 crossbred weaning piglets were randomly assigned to 3 treatments. Experimental animals were fed basal diet supplemented with 0 mg Zn/kg (Control), 600 mg Zn/kg (Nano-ZnO) and 2000 mg Zn/kg (ZnO) for 14 days. On day 14 after weaning, the piglets fed Nano-ZnO did not differ from those fed traditional ZnO in growth performance and jejunal morphology, while Nano-ZnO treatment could significantly alleviate the incidence of diarrhea (P < 0.05). In jejunum, the mRNA expressions of intestinal antioxidant enzymes and tight junction proteins were increased (P < 0.05) in Nano-ZnO treatment. In ileum, the expression levels of IFN-γ, IL-1β, TNF-α and NF-κB were decreased (P < 0.05). Gene sequencing analysis of 16S rRNA revealed that dietary Nano-ZnO increased the bacterial richness and diversity in ileum, while decreased both of them in cecum and colon. Specifically, the relative abundances of Streptococcus in ileum, Lactobacillus in colon were increased, while the relative abundances of Lactobacillus in ileum, Oscillospira and Prevotella in colon were decreased (P < 0.05). In conclusion, our data reveal that low dose of Nano-ZnO (600 mg Zn/kg) can effectively reduce piglet diarrhea incidence, similar to high dose of traditional ZnO (2000 mg Zn/kg), which may be mediated by improving intestinal microbiota and inflammation response in piglets, and help to reduce zinc environmental pollution.
Collapse
|
13
|
Poirier I, Kuhn L, Demortière A, Mirvaux B, Hammann P, Chicher J, Caplat C, Pallud M, Bertrand M. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. J Proteomics 2016; 148:213-27. [DOI: 10.1016/j.jprot.2016.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
|