1
|
Jacques C, Bacqueville D, Jamin EL, Maitre M, Delsol C, Simcic-Mori A, Bianchi P, Noustens A, Jouanin I, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics approach to understand the impact of sun exposure on an in vitro skin ecosystem and evaluate a new broad-spectrum sunscreen. Photochem Photobiol 2024; 100:477-490. [PMID: 37485720 DOI: 10.1111/php.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Daniel Bacqueville
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Martine Maitre
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | - Aimée Simcic-Mori
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Pascale Bianchi
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
2
|
Yang W, Shan Z. Application of wool keratin: an anti-ultraviolet wall material in spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4235-4244. [PMID: 34538906 DOI: 10.1007/s13197-020-04897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Low-molecular-weight keratin (LMWK) obtained from wool was employed as a wall material for the spray drying encapsulation of fish oil. Microcapsules with different LMWK contents were prepared, and their anti-ultraviolet performance and other features were studied. The results showed that LMWK was able to improve the encapsulation efficiency of fish oil because of its good emulsifying properties. When the LMWK content was increased from 0 to 10, 30 and 50%, the shelf life of the microcapsules under ultraviolet irradiation increased from 48 to 96 h, 144 h and 168 h, respectively. The strongest absorption efficiency of LMWK is shown in the UVc band. The chemical structure of LMWK did not change during an ultraviolet accelerating ageing test.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| | - Zhihua Shan
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
3
|
Lee SH, Kawase J, Hiroshima Y, Oe T. Screening of Chemical Modifications in Human Skin Keratins by Mass Spectrometry-Based Proteomic Analysis via Noninvasive Sampling and On-Tape Digestion. J Proteome Res 2020; 19:3837-3845. [PMID: 32786680 DOI: 10.1021/acs.jproteome.0c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins are continuously exposed to diverse chemical stresses, and the resulting chemical modifications can provide significant information on biological events. Keratins are the main constituent of human skin and are the major target proteins of various chemical modifications. We have previously developed a mass spectrometry-based noninvasive proteomic methodology to screen oxidative modifications in human skin keratins. We have improved this methodology in terms of sample preparation time and amino acid sequence coverage using an on-tape digestion method. After sampling by tape stripping, skin proteins on the tape were subjected to reduction/alkylation, followed by trypsin digestion without a presolubilization step using detergents. To screen chemical modifications in keratins, target modifications and tryptic target peptides carrying the modification sites were determined from in vitro experiments with major reactive chemical species (4-hydroxy-2(E)-nonenal (HNE), 4-oxo-2(E)-nonenal, glucose, methylglyoxal, peroxynitrite, and hydrogen peroxide). The developed method was used to screen target modifications in controls and patients with a swollen red rash. Basal levels of lipid-derived modification, oxidation, nitration, and glycation in keratins were detected in controls. Principal component analysis based on the relative chemical modification resulted in a clear classification of both groups within a 95% confidence interval. Lipid-derived HNE modification increased most significantly in the patient group. This methodology can be easily applied to patients with other diseases, and the target modifications can be used as biomarkers of certain physiological conditions.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jiei Kawase
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Hiroshima
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Evaluation and improvement of protein extraction methods for analysis of skin proteome by noninvasive tape stripping. J Proteomics 2020; 217:103678. [DOI: 10.1016/j.jprot.2020.103678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/27/2022]
|
5
|
Lipsky ZW, German GK. Ultraviolet light degrades the mechanical and structural properties of human stratum corneum. J Mech Behav Biomed Mater 2019; 100:103391. [DOI: 10.1016/j.jmbbm.2019.103391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
6
|
Wang PW, Hung YC, Lin TY, Fang JY, Yang PM, Chen MH, Pan TL. Comparison of the Biological Impact of UVA and UVB upon the Skin with Functional Proteomics and Immunohistochemistry. Antioxidants (Basel) 2019; 8:antiox8120569. [PMID: 31756938 PMCID: PMC6943602 DOI: 10.3390/antiox8120569] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
The skin provides protection against external stimuli; however, solar radiation, including ultraviolet A (UVA) and ultraviolet B (UVB), can result in profound influences on skin structure and function, which eventually impairs its molecular characteristics and normal physiology. In the current study, we performed proteome tools combined with an immunohistological approach on nude mouse skin to evaluate the adverse responses elicited by UVA and UVB irradiation, respectively. Our findings indicated that UVA significantly promotes oxidative damage in DNA, the breakdown of collagen fiber in the dermis, and the apoptosis of fibroblasts, which leads to inflammation. Meanwhile, UVB administration was found to enhance the carbonylation of various proteins and the proliferation of keratinocyte. Particularly, raspberry extract, which has been confirmed to have antioxidative efficacy, could effectively attenuate ultraviolet (UV) radiation-caused cell death. Network analysis also implied that UVA and UVB induce quite different responses, and that UVA results in cell death as well as inflammation mediated by caspase-3 and activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells (AP-1/NF-κB), while UVB predominantly increases the risk of skin carcinogenesis involved with oncogenes such as p53 and c-Myc. Taken together, functional proteomics coordinated with histological experiments could allow for a high-throughput study to explore the alterations of crucial proteins and molecules linked to skin impacts subjected to UVA and UVB exposure.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan;
| | - Yu-Chiang Hung
- Department of Chinese Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan;
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11042, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5105); Fax: +886-3-211-8700
| |
Collapse
|
7
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
8
|
Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 2018; 8:16425. [PMID: 30401937 PMCID: PMC6219553 DOI: 10.1038/s41598-018-34791-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023] Open
Abstract
Fingermarks are trace evidence of great forensic importance, and their omnipresence makes them pivotal in crime investigation. Police and law enforcement authorities have exploited fingermarks primarily for personal identification, but crucial knowledge on when fingermarks were deposited is often lacking, thereby hindering crime reconstruction. Biomolecular constituents of fingermark residue, such as amino acids, lipids and proteins, may provide excellent means for fingermark age determination, however robust methodologies or detailed knowledge on molecular mechanisms in time are currently not available. Here, we address fingermark age assessment by: (i) drafting a first protein map of fingermark residue, (ii) differential studies of fresh and aged fingermarks and (iii), to mimic real-world scenarios, estimating the effects of donor contact with bodily fluids on the identification of potential age biomarkers. Using a high-resolution mass spectrometry-based proteomics approach, we drafted a characteristic fingermark proteome, of which five proteins were identified as promising candidates for fingermark age estimation. This study additionally demonstrates successful identification of both endogenous and contaminant proteins from donors that have been in contact with various bodily fluids. In summary, we introduce state-of-the-art proteomics as a sensitive tool to monitor fingermark aging on the protein level with sufficient selectivity to differentiate potential age markers from body fluid contaminants.
Collapse
Affiliation(s)
- Stijn Oonk
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Tom Schuurmans
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands
| | - Martin Pabst
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Louis C P M de Smet
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Wageningen University & Research, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcel de Puit
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
9
|
Identification of Ophiocordyceps sinensis and Its Artificially Cultured Ophiocordyceps Mycelia by Ultra-Performance Liquid Chromatography/Orbitrap Fusion Mass Spectrometry and Chemometrics. Molecules 2018; 23:molecules23051013. [PMID: 29701667 PMCID: PMC6100002 DOI: 10.3390/molecules23051013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
Since the cost of Ophiocordyceps sinensis, an important fungal drug used in Chinese medicine, has increased dramatically, and the counterfeits may have adverse health effects, a rapid and precise marker using the peptide mass spectrometry identification system could significantly enhance the regulatory capacity. In this study, we determined the marker peptides in the digested mixtures of fungal proteins in wild O. sinensis fruiting bodies and various commercially available mycelium fermented powders using ultra-performance liquid chromatography/Orbitrap Fusion mass spectrometry coupled with chemometrics. The results indicated the following marker peptides: TLLEAIDSIEPPK (m/z 713.39) was identified in the wild O. sinensis fruiting body, AVLSDAITLVR (m/z 579.34) was detected in the fermented O. sinensis mycelium powder, FAELLEK (m/z 849.47) was found in the fermented Ophiocordyceps mycelium powder, LESVVTSFTK (m/z 555.80) was discovered in the artificial Ophiocordyceps mycelium powder, and VPSSAVLR (m/z 414.75) was observed in O. mortierella mycelium powder. In order to verify the specificity and applicability of the method, the five marker peptides were synthesized and tested on all samples. All in all, to the best of our knowledge, this is the first time that mass spectrometry has been employed to detect the marker peptides of O.sinensis and its related products.
Collapse
|
10
|
Boyatzis AE, Bringans SD, Piggott MJ, Duong MN, Lipscombe RJ, Arthur PG. Limiting the Hydrolysis and Oxidation of Maleimide–Peptide Adducts Improves Detection of Protein Thiol Oxidation. J Proteome Res 2017; 16:2004-2015. [DOI: 10.1021/acs.jproteome.6b01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Amber E. Boyatzis
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Marisa N. Duong
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Peter G. Arthur
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
11
|
Ye Y, Sun-Waterhouse D, You L, Abbasi AM. Harnessing food-based bioactive compounds to reduce the effects of ultraviolet radiation: a review exploring the link between food and human health. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuhui Ye
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lijun You
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Arshad Mehmood Abbasi
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Department of Environmental Sciences; COMSATS Institute of Information Technology (CIIT); Park Road ChakShahzad Islamabad 22060 Pakistan
| |
Collapse
|
12
|
An LC/ESI-SRM/MS method to screen chemically modified hemoglobin: simultaneous analysis for oxidized, nitrated, lipidated, and glycated sites. Anal Bioanal Chem 2016; 408:5379-92. [PMID: 27236314 DOI: 10.1007/s00216-016-9635-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Proteins are continuously exposed to various reactive chemical species (reactive oxygen/nitrogen species, endogenous/exogenous aldehydes/epoxides, etc.) due to physiological and chemical stresses, resulting in various chemical modifications such as oxidation, nitration, glycation/glycoxidation, lipidation/lipoxidation, and adduct formation with drugs/chemicals. Abundant proteins with a long half-life, such as hemoglobin (Hb, t 1/2 63 days, ∼150 mg/mL), are believed to be major targets of reactive chemical species that reflect biological events. Chemical modifications on Hb have been investigated mainly by mechanistic in vitro experiments or in vivo/clinical experiments focused on single target modifications. Here, we describe an optimized LC/ESI-SRM/MS method to screen oxidized, nitrated, lipidated, and glycated sites on Hb. In vivo preliminary results suggest that this method can detect simultaneously the presence of oxidation (+16 Da) of α-Met(32), α-Met(76), β-Met(55), and β-Trp(15) and adducts of malondialdehyde (+54 Da) and glycation (+162 Da) of β-Val(1) in a blood sample from a healthy volunteer. Graphical Abstract Screening chemical modifications on hemoglobin.
Collapse
|
13
|
Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation. Data Brief 2016; 7:100-6. [PMID: 26958637 PMCID: PMC4764772 DOI: 10.1016/j.dib.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/26/2022] Open
Abstract
A mass spectrometry (MS)-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin (“Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry” [1], “UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis” [2]). Human skin proteins were obtained non-invasively by tape stripping and solubilized in sodium dodecyl sulfate (SDS) buffer, followed by purification and digestion using the filter-aided sample preparation method. The tryptic peptides were then analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-MS, tandem MS (MS/MS), and LC/ESI-selected reaction monitoring (SRM)/MS. The MS/MS data were generated to confirm amino acid sequences and oxidation sites of tryptic peptides D290VDGAYMTK298 (P1) and N258MQDMVEDYR267 (P2), which contain the most susceptible oxidation sites (Met259, Met262, and Met296 in K1 keratin) upon UVA irradiation [2]. Subsequently, quantitative determination of the relative oxidation levels of P1 and P1 [2] was achieved by LC/ESI-SRM/MS analyses of P1 and P2 together with their oxidized forms after exposure to UVA radiation or treatment with hydrogen peroxide (H2O2).
Collapse
|