1
|
Kowal K, Tkaczyk-Wlizło A, Jusiak M, Grzybowska-Szatkowska L, Ślaska B. Canis MitoSNP database: a functional tool useful for comparative analyses of human and canine mitochondrial genomes. J Appl Genet 2023; 64:515-520. [PMID: 37351774 PMCID: PMC10457218 DOI: 10.1007/s13353-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/24/2023]
Abstract
Canis MitoSNP is a tool allowing assignment of each mitochondrial genomic position a corresponding position in the mitochondrial gene and in the structure of tRNA, rRNA, and protein. The main aim of this bioinformatic tool was to use data from other bioinformatic tools (TMHMM, SOPMA, tRNA-SCAN, RNAfold, ConSurf) for dog and human mitochondrial genes in order to shorten the time necessary for the analysis of the whole genome single nucleotide polymorphism (SNP) as well as amino acid and protein analyses. Each position in the canine mitochondrial genome is assigned a position in genes, in codons, an amino acid position in proteins, or a position in tRNA or rRNA molecules. Therefore, a user analysing changes in the canine and human mitochondrial genome does not need to extract the sequences of individual genes from the mitochondrial genome for analysis and there is no need to rewrite them into amino acid sequences to assess whether the change is synonymous or nonsynonymous. Canis mitoSNP allows the comparison between the human and canine mitochondrial genomes as well. The Clustal W alignment of the dog and human mitochondrial DNA reference sequences for each gene obtained from GenBank (NC_002008.4 dog, NC_012920.1 human) was performed in order to determine which position in the canine mitochondrial genome corresponds to the position in the human mitochondrial genome. This function may be useful for the comparative analyses. The tool is available at: https://canismitosnp.pl .
Collapse
Affiliation(s)
- Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950, Lublin, Poland
| | - Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950, Lublin, Poland
| | - Marcin Jusiak
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950, Lublin, Poland
| | | | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950, Lublin, Poland.
| |
Collapse
|
2
|
Grobman M, Rindt H, Reinero CR. Proteomic Characterization of Canine Gastric Fluid by Liquid Chromatography-Mass Spectrometry for Development of Protein Biomarkers in Regurgitation, Vomiting, and Cough. Front Vet Sci 2021; 8:670007. [PMID: 34307522 PMCID: PMC8292676 DOI: 10.3389/fvets.2021.670007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Reflux and aspiration in people cause and exacerbate respiratory diseases in the absence of gastrointestinal signs. Protein biomarkers in humans detect extraesophageal reflux (EER) from oropharyngeal (OP) and bronchoalveloar lavage samples. Reflux likely contributes to respiratory disease in dogs. The objectives of this study were to analyze the canine gastric fluid (GF) proteome and compare this to the OP proteome in normal, vomiting/regurgitating, and coughing dogs to identify biomarkers for EER/aspiration. Twenty-three client-owned dogs were enrolled. Canine GF samples (n = 5) and OP swabs in normal (n = 6), vomiting/regurgitating (n = 7), and coughing (n = 5) dogs were within 2 weeks of sample collection. Protein digests were analyzed by liquid chromatography–mass spectrometry. Differential abundance (DA) of proteins between groups was evaluated by Fisher's exact test with p < 0.0004 significance level after correction for multiple comparisons. DA was found between all groups (p < 0.0001): GF vs. normal (n = 130 proteins), coughing vs. normal (n = 22 proteins), and vomiting/regurgitating vs. normal (n = 20 proteins). Protein abundance was highly variable between dogs. Gastrointestinal-specific proteins were found in OP swabs from vomiting/regurgitating and coughing dogs but not from healthy dogs. In conclusion, the proteomic composition of the OP varies between health and disease. The presence of gastrointestinal-specific proteins in OP of coughing dogs may suggest reflux and/or aspiration as contributing factors. The variable protein abundance warrants investigation into biomarker panels.
Collapse
Affiliation(s)
- Megan Grobman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hansjörg Rindt
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
4
|
Baka R, Eckersall D, Horvatic A, Gelemanovic A, Mrljak V, McLaughlin M, Athanasiou LV, Papaioannou N, Stylianaki I, Hanh HQ, Chadwick CC, Polizopoulou Z. Quantitative proteomics of cerebrospinal fluid using tandem mass tags in dogs with recurrent epileptic seizures. J Proteomics 2020; 231:103997. [PMID: 33011347 DOI: 10.1016/j.jprot.2020.103997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
This prospective study included four dog groups (group A: healthy dogs, groups B: dogs with idiopathic epilepsy under antiepileptic medication (AEM), C: idiopathic epilepsy dogs without AEM administration, D: dogs with structural epilepsy). The purpose of the study was to compare the proteomic profile among the four groups. Samples were analyzed by a quantitative Tandem Mass Tags approach using a Q-Exactive-Plus mass-spectrometer. Identification and relative quantification were performed using Proteome Discoverer, and data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD018893. Eighteen proteins were statistically significant among the four groups (P < 0.05). MMP2 and EFEMP2 appeared down-regulated whereas HP and APO-A1 were up-regulated (groups B, D). CLEC3B and PEBP4 were up-regulated whereas APO-A1 was down-regulated (group C). IGLL1 was down-regulated (groups B, C) and up-regulated (group D). EFEMP2 was the only protein detected among the four groups and PEBP4 was significantly different among the epileptic dogs. Western blot and SPARCL immunoassay were used to quantify HP abundance change, validating proteomic analysis. Both, showed good correlation with HP levels identified through proteomic analysis (r = 0.712 and r = 0.703, respectively). SIGNIFICANCE: The proteomic analysis from CSF of dogs with epileptic seizures could reflect that MMP2, HP and APO-A1 may contribute to a blood-brain barrier disruption through the seizure-induced inflammatory process in the brain. MMP2 change may indicate the activation of protective mechanisms within the brain tissue. Antiepileptic medication could influence several cellular responses and alter the CSF proteome composition.
Collapse
Affiliation(s)
- Rania Baka
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Anita Horvatic
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Vladimir Mrljak
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Nikolaos Papaioannou
- Department of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Stylianaki
- Department of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Han Quang Hanh
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | | | - Zoe Polizopoulou
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
The plasma proteome and the acute phase protein response in canine pyometra. J Proteomics 2020; 223:103817. [PMID: 32416315 DOI: 10.1016/j.jprot.2020.103817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 01/30/2023]
Abstract
Canine pyometra is a common inflammatory disease of uterus in sexually mature bitches caused by secondary bacterial infection, leading to change in plasma proteins associated with the innate immune system. Proteomic investigation is increasingly being applied to canine diseases in order to identify and quantify significant changes in the plasma proteome. The aim of the study was to assess and quantify changes in plasma proteome profiles of healthy dogs and pyometra affected bitches using a TMT-based high-resolution quantitative proteomic approach. As a result, 22 proteins were significantly down-regulated including transthyretin, antithrombin, retinol-binding protein, vitamin D binding protein, paraoxonase 1, and kallikrein, while 16 were significantly up-regulated including haptoglobin light chain, alpha-1-acid glycoprotein, C-reactive protein precursor, and lipopolysaccharide-binding protein in dogs with pyometra. Pathway analysis indicated that acute inflammatory response, regulation of body fluid levels, protein activation cascade, the humoral immune response, and phagocytosis were affected in pyometra. Validation of biological relevance of the proteomic study was evident with significant increases in the concentrations of haptoglobin, C-reactive protein, alpha-1-acid glycoprotein, and ceruloplasmin by immunoassay. Pyometra in bitches was shown to stimulate an increase in host defence system proteins in response to inflammatory disease including the acute phase proteins. SIGNIFICANCE: The label-based high-resolution quantitative proteomics analysis and bioinformatic approach used in this study provide insight into the complex pathophysiology of inflammation associated with pyometra revealing proteins with biomarker potential. Early diagnosis and therapeutic intervention may prevent severe complications associated with advancing sepsis in dogs with pyometra. Therefore the identification of diagnostic biomarkers that, after clinical validation may be used in veterinary practice and protein relevant to pathways responding to disease are important findings of the study. Data are available via ProteomeXchange with identifier PXD015951.
Collapse
|
6
|
Fecal Proteomic Analysis in Healthy Dogs and in Dogs Suffering from Food Responsive Diarrhea. ScientificWorldJournal 2019; 2019:2742401. [PMID: 30718980 PMCID: PMC6335819 DOI: 10.1155/2019/2742401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Different laboratory markers are routinely used in the diagnosis and management of gastrointestinal (GI) disease in dogs. In the present study, starting from feces from both healthy dogs and dogs suffering from food responsive diarrhea (FRD), we tried to find proteins differently expressed in the two groups of dogs, by using a proteomic approach. Interestingly, we found that the immunoglobulin J-chain isoform 1 (species: Canis lupus familiaris) was identified only in diseased dogs (not in healthy). J-chain combines especially IgA monomers to IgA dimers and plays a crucial role for their secretions into mucosal interface. Being the first study of that kind in the dog, it is only possible to hypothesize that their presence could be likely due to an increased activation of the immune system or to a mucosal damage or both in FRD patients. Similarly, it is still impossible to assess whether this protein could be used as diagnostic/prognostic marker of GI disease; however, this study represents a promising first step toward fecal proteomics in canine GI disorders.
Collapse
|
7
|
Bilić P, Kuleš J, Galan A, Gomes de Pontes L, Guillemin N, Horvatić A, Festa Sabes A, Mrljak V, Eckersall PD. Proteomics in Veterinary Medicine and Animal Science: Neglected Scientific Opportunities with Immediate Impact. Proteomics 2018; 18:e1800047. [DOI: 10.1002/pmic.201800047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Bilić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Josipa Kuleš
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Asier Galan
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Leticia Gomes de Pontes
- Botucatu Medical School; Sao Paulo State University (UNESP); Avenida José Barbosa de Barros, 1780; Botucatu 18610-307 Brazil
| | - Nicolas Guillemin
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Anita Horvatić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Amanda Festa Sabes
- Department of Clinical and Veterinary Surgery; Faculty of Agrarian and Veterinary Sciences; Via de Acesso Paulo Donato Castellane s/n. 14884-900 Jaboticabal São Paulo Brazil
| | - Vladimir Mrljak
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Peter David Eckersall
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medicine; Veterinary Medicine and Life Sciences; University of Glasgow; Glasgow G61 1QH UK
| |
Collapse
|
8
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
9
|
Villarnovo D, McCleary-Wheeler AL, Richards KL. Barking up the right tree: advancing our understanding and treatment of lymphoma with a spontaneous canine model. Curr Opin Hematol 2017; 24:359-366. [PMID: 28426554 PMCID: PMC5553274 DOI: 10.1097/moh.0000000000000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Spontaneous lymphoma in pet dogs is increasingly recognized as an ideal model for studying the disease in humans and for developing new targeted therapeutics for patients. Increasing interest by funding agencies, the private sector, and multidisciplinary academic collaborations between different disciplines and sectors now enables large knowledge gaps to be addressed and provides additional proof-of-concept examples to showcase the significance of the canine model. RECENT FINDINGS The current review addresses the rationale for a canine lymphoma model including the valuable role it can play in drug development, serving as a link between mouse xenograft models and human clinical trials and the infrastructure that is now in place to facilitate these studies. Research in this field has focused on filling in the gaps to make the canine lymphoma model more robust. These advances have included work on biomarkers, detection of minimal residual disease, expansion of genomic and proteomic data, and immunotherapy. SUMMARY Incorporating pet dogs into the drug development pipeline can improve the efficiency and predictability of preclinical models and decrease the time and cost required for a therapeutic target to be translated into clinical benefit.
Collapse
Affiliation(s)
- Dania Villarnovo
- aDepartment of Biomedical Sciences bDepartment of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca cSandra and Edward Meyer Cancer Center dDivision of Hematology/Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
10
|
Abstract
This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.
Collapse
Affiliation(s)
- Michael J Myers
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Emily R Smith
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Phillip G Turfle
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| |
Collapse
|