1
|
Martucci LF, Eichler RA, Silva RN, Costa TJ, Tostes RC, Busatto GF, Seelaender MC, Duarte AJ, Souza HP, Ferro ES. Intracellular peptides in SARS-CoV-2-infected patients. iScience 2023; 26:107542. [PMID: 37636076 PMCID: PMC10448160 DOI: 10.1016/j.isci.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.
Collapse
Affiliation(s)
- Luiz Felipe Martucci
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | | | - Renée N.O. Silva
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Geraldo F. Busatto
- Department of Psichiatry, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Marilia C.L. Seelaender
- Department of Surgery, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Alberto J.S. Duarte
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Heraldo P. Souza
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| |
Collapse
|
2
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
3
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
4
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
5
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
7
|
Abstract
Proteasomes are large, multicatalytic protein complexes that cleave cellular proteins into peptides. There are many distinct forms of proteasomes that differ in catalytically active subunits, regulatory subunits, and associated proteins. Proteasome inhibitors are an important class of drugs for the treatment of multiple myeloma and mantle cell lymphoma, and they are being investigated for other diseases. Bortezomib (Velcade) was the first proteasome inhibitor to be approved by the US Food and Drug Administration. Carfilzomib (Kyprolis) and ixazomib (Ninlaro) have recently been approved, and more drugs are in development. While the primary mechanism of action is inhibition of the proteasome, the downstream events that lead to selective cell death are not entirely clear. Proteasome inhibitors have been found to affect protein turnover but at concentrations that are much higher than those achieved clinically, raising the possibility that some of the effects of proteasome inhibitors are mediated by other mechanisms.
Collapse
Affiliation(s)
- Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
8
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
9
|
Teixeira CMM, Correa CN, Iwai LK, Ferro ES, Castro LMD. Characterization of Intracellular Peptides from Zebrafish (Danio rerio) Brain. Zebrafish 2019; 16:240-251. [DOI: 10.1089/zeb.2018.1718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Leo Kei Iwai
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune Response and Cell Signaling, Butantan Institute, São Paulo, Brazil
| | - Emer Suavinho Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|