1
|
Shi Y, Hu J, Li X, Jian J, Jiang L, Yin C, Xi Y, Huang K, Su L, Zhou L. High comprehensive properties of colorless transparent polyimide films derived from fluorine-containing and ether-containing dianhydride. RSC Adv 2024; 14:32613-32623. [PMID: 39416376 PMCID: PMC11480813 DOI: 10.1039/d4ra05505e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorinated colorless transparent polyimide (CPI) films are crucial for flexible displays and wearable devices, but their development is limited by high costs and relatively low mechanical properties. In this study, a series of colorless transparent polyimide films was synthesized by incorporating the cost-effective ether-containing diamine, 4,4'-isopropylidenediphenoxy bis(phthalic anhydride) (BPADA), into commercially available 4,4'-(hexafluoroisopropyl)diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The comprehensive properties of the films were systematically investigated using a combination of experimental and numerical methods, including molecular dynamics (MD) simulations and density functional theory (DFT). This study focuses on exploring the influence of varying dianhydride ratios on the aforementioned properties. The incorporation of BPADA in the dianhydride significantly enhances the mechanical properties and flexibility of the film. When the ratio of ether anhydride to fluorine anhydride is 4 : 6 (CPI-4), the tensile strength is 135.3 MPa, and the elongation at break is 8.3%, which is 109.6% and 118.45% higher than that of the original film without ether anhydride. This research provides valuable insights for the future application of new polyimide materials in flexible display devices.
Collapse
Affiliation(s)
- Yan Shi
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Jinzhi Hu
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Xiaomin Li
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Jing Jian
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Lili Jiang
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Chuanqiang Yin
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Yuchun Xi
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Kai Huang
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Liejun Su
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Lang Zhou
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| |
Collapse
|
2
|
Zhong F, Zhang Q, Chen K, Lan S, Yang W, Gan X. Eco-Friendly Cinnamic Acid Derivatives Containing Glycoside Scaffolds as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17752-17762. [PMID: 37943715 DOI: 10.1021/acs.jafc.3c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Natural products are a crucial source in the development of new eco-friendly antiviral agents to control plant viral diseases. In our previous studies, some ferulic acid derivatives with good antiviral activity were obtained as an immune activator. To continue the discovery of eco-friendly antiviral agents, different monosaccharides were introduced into cinnamic acid skeletons by an activity-based strategy to obtain a series of cinnamic acid derivatives containing glycoside scaffolds, and their antiviral activities against tobacco mosaic virus (TMV) and tomato spotted wilt virus (TSWV) were evaluated. Among them, compound 8d showed the greatest protective activities against TMV and TSWV, with the EC50 values of 128.5 and 236.8 μg mL-1, respectively, which were superior to those of ningnanmycin (238.5 and 315.7 μg mL-1, respectively). Moreover, compound 8d could significantly improve the defense enzyme activities of peroxidase, chitinase, and β-1,3-glucanase. Proteomic and transcriptome analyses indicated that compound 8d regulated gene transcription and protein expression levels involved in the defense response to resist virus infection. The present study revealed that compound 8d is a potential lead candidate for the development of novel, eco-friendly, and natural-product-based antiviral agents.
Collapse
Affiliation(s)
- Fangping Zhong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kejia Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shichao Lan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenchao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
3
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154355. [PMID: 35908520 DOI: 10.1016/j.phymed.2022.154355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression, one of the most common mental illnesses and mood disorder syndromes, can seriously harm physical and mental health. As the pathophysiology of depression remains unclear, there is a need to find novel therapeutic agents. Ferulic acid (FA), a phenolic compound found in various Chinese herbal medicines, has anti-inflammatory and free radical scavenging properties as well as a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical research to fully discuss the anti-depression capacity of FA and discussed FAs' holistic characteristics that can contribute to better management of depression. STUDY DESIGN We reviewed the results of in vitro and in vivo experiments using FA to treat depression and explored the possible antidepressant pharmacological mechanisms of FA for the clinical treatment of depression. METHODS Electronic databases, including PubMed, Google Scholar, and China National Knowledge Infrastructure, were searched from the beginning of the database creation to December 2021. RESULTS Studies on the antidepressant effects of FA show that it may exert such effects through various mechanisms. These include the following: the regulation of monoamine and non-monoamine neurotransmitter levels, inhibition of hypothalamic-pituitary-adrenal axis hyperfunction and neuroinflammation, promotion of hippocampal neurogenesis and upregulation brain-derived neurotrophic factor level, neuroprotection (inhibition of neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis), and downregulation of oxidative stress. CONCLUSION Preclinical studies on the antidepressant effects of FA were reviewed in this study, and research on the antidepressant mechanisms of FA was summarized, confirming that FA can exert antidepressant effects through various pharmacological mechanisms. However, more multicenter clinical case-control studies are needed to confirm the clinical efficacy of FA.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China.
| |
Collapse
|
5
|
Structure and Properties of Low Dielectric Constant Polyetherimide Films Containing-CF3 and Cardo Groups. Macromol Res 2022. [DOI: 10.1007/s13233-022-0089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Wang S, Chen J, Shi J, Wang Z, Hu D, Song B. Novel Cinnamic Acid Derivatives Containing the 1,3,4-Oxadiazole Moiety: Design, Synthesis, Antibacterial Activities, and Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11804-11815. [PMID: 34597041 DOI: 10.1021/acs.jafc.1c03087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a lack of effective antibacterial agents against rice bacterial leaf streak and leaf blight. Cinnamic acid derivatives containing the 1,3,4-oxadiazole moiety were synthesized, and their antibacterial activities against Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo) were evaluated. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model, compound 31 with better antibacterial activity against Xoc was designed and synthesized, and the 50% effective concentration (EC50) value was 0.2 mg/L. The curative and protective activities of compound 31 against rice bacterial leaf streak at 100 mg/L were 39.5 and 35.4%, respectively, which were higher than those of thiodiazole copper (28.4 and 20.7%, respectively). The antibacterial activity of compound 31 against rice bacterial leaf streak is closely associated with the activity of related defensive enzymes and the increase in glutathione metabolism.
Collapse
Affiliation(s)
- Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Zhijia Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
7
|
Revealing the High-Modulus Mechanism of Polyimide Films Prepared with 3,4'-ODA. Polymers (Basel) 2021; 13:polym13183175. [PMID: 34578077 PMCID: PMC8473375 DOI: 10.3390/polym13183175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
To prepare PIs (polyimides) with desirable thermal and mechanical properties is highly demanded due to their widespread applications in flexible optoelectronic devices and printed circuit boards. Here, the PI films of BPDA/4,4′-ODA, BPDA/3,4′-ODA, PMDA/4,4′-ODA, PMDA/3,4′-ODA systems were prepared, and it was found that the PIs with 3,4′-ODA always exhibit a high modulus compared with the PIs with 4,4′-ODA. To disclose the mechanism of high-modulus PI films with 3,4′-ODA, amorphous PI models and uniaxial drawing PI models were established and calculated based on MD simulation. The PI structural deformations at different length scales, i.e., molecular chain cluster scale and repeat unit scale, under the same stress were detailed and analyzed, including the variation of chain conformation, bond length, bond angle, internal rotation energy, and torsion angle. The results indicate that PIs with 3,4-ODA have higher internal rotation energy and smaller deformation with the same stress, consistent with the high modulus.
Collapse
|
8
|
Pacholak A, Gao ZL, Gong XY, Kaczorek E, Cui YW. The metabolic pathways of polyhydroxyalkanoates and exopolysaccharides synthesized by Haloferax mediterranei in response to elevated salinity. J Proteomics 2020; 232:104065. [PMID: 33276193 DOI: 10.1016/j.jprot.2020.104065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
How polymer synthesis is mobilized or activated as a biological response of Haloferax mediterranei against hypertonic conditions remains largely unexplored. This study investigated the protein expression of H. mediterranei in response to high salinity by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. The microbes were harvested at end of fermentation at the NaCl salinity of 75 and 250 g L-1. Among the identified 2123 proteins, 170 proteins were differentially expressed. Gene ontology annotation revealed that the highest number of proteins was annotated in biological process category, which was responsible for metabolic process, cellular component and catalytic activity. Differentially expressed proteins were belonged to the class of response to stimulus as well as catalytic activity and binding. Under high salinity conditions, three pathways were established as key responses of PHA and EPS production to hypertonic pressure. Two overexpressed proteins, beta-ketoacyl-ACP reductase and 3-hydroxyacyl-CoA dehydrogenase, enhanced the synthesis of PHAs. The serine-pyruvate transaminase and serine-glyoxylate transaminase were upregulated, thereby increasing the conversion of glucose to PHA. Downregulated levels of sulfate-adenylyl transferase and adenylyl-sulfate kinase could cause diminished EPS synthesis. This study could contribute to better understanding of the proteomic mechanisms of the synthesized polymers in defending against salt stress. SIGNIFICANCE: Haloferax mediterranei, a family member of halophilic archaea, is well known for its fermentative production of poly-β-hydroxyalkanoates (PHAs). PHAs are natural polymers that exhibit great potential in a wide range of applications such as a good alternative to petroleum-based plastics and the biocompatible material. For decades, the functional role of PHAs synthesized by H. mediterranei is deemed to be carbon and energy reservations. The finding proved that differential production of PHA and EPS in H. mediterranei exposed to elevated salinity was caused by differential protein expression. This is the first report on how PHA and EPS synthesized by H. mediterranei is mobilized as the response of increased salinity, contributing to the understanding of halophilic archaea's response to hypertonic stress and the precise control of fermentation production. Despite its advantages as a PHA cell factory, H. mediterranei synthesized EPS simultaneously, thereby lowering the maximum yield of PHA production. Overall, salinity can be used as a vital microbial fermentation parameter to obtain the highest harvest of PHA, as well as the lowest EPS synthesis in industrial fermentation.
Collapse
Affiliation(s)
- Amanda Pacholak
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China; Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ze-Liang Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xiao-Yu Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|