1
|
Muthusamy R, Ramkumar G, Kumarasamy S, Chi NTL, Al Obaid S, Alfarraj S, Karuppusamy I. Synergism and toxicity of iron nanoparticles derived from Trigonella foenum-graecum against pyrethriod treatment in S. litura and H. armigera (Lepidoptera: Noctuidae). ENVIRONMENTAL RESEARCH 2023:116079. [PMID: 37156353 DOI: 10.1016/j.envres.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The tobacco cutworm, Spodoptera litura and cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) are important pests of various agricultural crops that cause sevier economic loses throughout the world. Indiscriminate and frequent use of insecticide may lead to development of resistance in these pests. Nanotechnology has given an alternative to manage and overcome insecticide resistance for pest management strategies. In the present study the iron nanoparticles derived from Trigonella foenum-graecum leaf extract (FeNPs) was investigated for its ecofriendly management of pyrethroid resistance in two lepidopteron pest species at 24 h, 48 h and 72 h post treatment. The result showed high mortality (92.83% and 91.41%) of S. litura and H. armigera at 72 h treatment upon FeNPs and fenvalerate (Fen + FeNPs) teratment. Probit analysis revealed high LC50 upon Fen + FeNPs treatment (130.31 and 89.32 mg/L) with a synergism ratio of 1.38 and 1.36. Antifeedant activity of six dofferent concentration of FeNPs revelaed increased antifeedant activity with respect to increasing concentration of nanoparticles ranging from 10 to 90% and 20-95% againt both insects (p<0.05). Detoxification activity of carboxylesterase was elevated at 630 μmol/mg protein/min (p<0.05) in fenvalerate treatment, whereas decreased activity was found (392umole/mg protein/min) in FeNPs and Fen + FeNPs treatment (P<0.001). GST and P450 activity was also increased in fenvalerate treatment, whereas decreased activity was observed in FeNPs and Fen + FeNPs. Esterase isoenzyme banding pattern revealed four bands in fenvalerate treatment and two bans (E3 and E4) in Fen + FeNPs combination. Hence the present study concludes that T. foenum-graecum synthesized iron nanoparticles could be an effective alternate for ecofriendly management of S. litura and H. armigera.
Collapse
Affiliation(s)
- Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, 30223, GA, USA
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Xie L, Yang Q, Wu Y, Xiao J, Qu H, Jiang Y, Li T. Fumonisin B1 Biosynthesis Is Associated with Oxidative Stress and Plays an Important Role in Fusarium proliferatum Infection on Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5372-5381. [PMID: 36947157 DOI: 10.1021/acs.jafc.3c00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fungal response to oxidative stress during infection on postharvest fruit is largely unknown. Here, we found that hydrogen peroxide (H2O2) treatment inhibited the growth of Fusarium proliferatum causing crown rot of banana fruit, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation. H2O2 exposure increased endogenous reactive oxygen species (ROS) and fumonisin B1 (FB1) production in F. proliferatum, possibly by modulating FUM or ROS-related gene expression. Importantly, H2O2 treatment inhibited F. proliferatum growth in vivo but induced FB1 accumulation in banana peel. Finally, we constructed the FpFUM21 deletion mutant (ΔFpfum21) of F. proliferatum that was attenuated in FB1 biosynthesis and less tolerant to oxidative stress. Moreover, the ΔFpfum21 strain was less virulent compared to the wild type (WT) due to the inability to induce FB1 production in the banana host. These results suggested that FB1 biosynthesis is associated with oxidative stress in F. proliferatum and contributes to fungal infection on banana fruit.
Collapse
Affiliation(s)
- Lihong Xie
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuxiao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfei Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense 32004, Spain
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
3
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
4
|
Omotayo OP, Babalola OO. Fusarium verticillioides of maize plant: Potentials of propitious phytomicrobiome as biocontrol agents. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1095765. [PMID: 37746120 PMCID: PMC10512380 DOI: 10.3389/ffunb.2023.1095765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 09/26/2023]
Abstract
Disease outbreaks have been recorded due to exposure to Fusarium verticillioides and fumonisin, a mycotoxin produced by this fungus. F. verticillioides is a fungal pathogen of maize that causes infections, such as wilting and rotting, while contact with its fumonisin derivative manifests in the form of mild to severe illnesses in humans and animals. Maize infection by F. verticillioides causes loss or reduction in expected crop yield, thereby influencing households and nations' economies. While several efforts have been made to control the pathogenic fungus and its occurrence in the environment, it remains a challenge in agriculture, particularly in maize production. Several microorganisms which are plant-associated, especially those associated with the rhizosphere niche have been noted to possess antagonistic effects against F. verticillioides. They can inhibit the pathogen and tackle its debilitating effects on plants. Hence this study reviews the use of rhizosphere-associated biocontrol agents, such as Bacillus spp., Pseudomonas, Enterobacter, and Microbacterium oleivorans which forms part of the phytomicrobiome in other to prevent and control this toxicogenic fungus. These microorganisms were found to not only be effective in controlling its occurrence on maize plants but are environmentally safe and promote crop yield.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| |
Collapse
|
5
|
Li F, Lv Z, Zhong Z, Mao L, Chua LS, Xu L, Huang R. The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved. Foods 2023; 12:foods12030567. [PMID: 36766095 PMCID: PMC9913951 DOI: 10.3390/foods12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Aspergillus niger is one of the major pathogenic fungi causing postharvest grape decay. The development of antifungal agents is beneficial to reduce the loss of grapes during storage. The aim of this study was to investigate the antifungal mechanism of cyclosporin A (CsA). It was indicated that the rot development on grapes caused by A. niger was almost completely inhibited with CsA in vivo at a concentration of 200 mg/L. The transcriptomic analysis revealed that the expression levels of genes involved in rRNA processing and ribosome biogenesis were down-regulated, whereas those related to β-glucosidases and chitinases were up-regulated. The results implied that CsA may disturb rRNA and ribosome formation to obstruct protein synthesis, accelerate chitin and glucan degradation to destruct cell walls, and ultimately reduce postharvest decay caused by A. niger in grapes. This study evaluated the potential of CsA as a grape preservative and provided new insights into the mechanisms underlying the molecular response in A. niger with the treatment of CsA.
Collapse
Affiliation(s)
- Fengming Li
- School of Life Sciences, Huizhou University, Huizhou 516001, China
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Zhijuan Zhong
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Lutian Mao
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Lee Suan Chua
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysis, UTM Skudai, Johor Bahru 81310, Malaysia
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou 516001, China
- Correspondence: (L.X.); (R.H.)
| | - Riming Huang
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (R.H.)
| |
Collapse
|
6
|
Xie L, Wu Y, Duan X, Li T, Jiang Y. Proteomic and physiological analysis provides an elucidation of Fusarium proliferatum infection causing crown rot on banana fruit. Microbiol Res 2021; 256:126952. [PMID: 34968824 DOI: 10.1016/j.micres.2021.126952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Fusarium proliferatum causes the crown rot of harvested banana fruit but the underling infection mechanism remains unclear. Here, proteomic changes of the banana peel with and without inoculation of F. proliferatum were evaluated. In addition, we investigated the effects of F. proliferatum infection on cell structure, hormone content, primary metabolites and defense-related enzyme activities in the banana peel. Our results showed that F. proliferatum infection mainly affects cell wall components and inhibits the activities of polyphenoloxidase, peroxidase, and chitinase. Gel free quantitative proteomic analysis showed 92 down-regulated and 29 up-regulated proteins of banana peel after F. proliferatum infection. These proteins were mainly related to defense response to biotic stress, chloroplast structure and function, JA signaling pathway, and primary metabolism. Although jasmonic acid (JA) content and JA signaling component coronatine-insensitive (COI) protein were induced by F. proliferatum infection, JA-responsible defense genes/proteins were downregulated. In contrast, expression of senescence-related genes was induced by F. proliferatum, indicating that F. proliferatum modulated the JA signaling to accelerate the senescence of banana fruit. Additionally, salicylic acid (SA) content and SA signaling for resistance acquisition were inhibited by F. proliferatum. Taken together, these results suggest that F. proliferatum depolymerizes the cell wall barrier, impairs the defense system in banana fruit, and activates non-defensive JA-signaling pathway accelerated the senescence of banana fruit. This study provided the elucidation of the prominent pathways disturbed by F. proliferatum in banana fruit, which will facilitate the development of a new strategy to control crown rot of banana fruit and improvement of banana cultivars.
Collapse
Affiliation(s)
- Lihong Xie
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfei Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuewu Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Taotao Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Jin Q, Zhang Y, Wang Q, Li M, Sun H, Liu N, Zhang L, Zhang Y, Liu Z. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng. Microbiol Res 2021; 254:126914. [PMID: 34749295 DOI: 10.1016/j.micres.2021.126914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/19/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
Potassium fulvic acid (BSFA) and potassium humate (KHM), as organic fertilizers, can improve soil structure, increase soil nutrient levels and prevent plant diseases. However, knowledge is limited regarding how BSFA and KHM influence soil microbial communities and the interrelationships between community members associated with Panax ginseng. Soil pH and nutrient content increased significantly as a result of the addition of BSFA and KHM. The pH, NH4+-N, NO3--N, AP and AK increased by 1.72 %-5.55 %, 70.09 %-108.39 %, 35.38 %-216.20 %, 1.21 %-14.19 % and 3.40 %-5.94 %, respectively, in the BSFA and KHM treatments. The soil nutrient increase may be related to Micrococcaceae and arbuscular mycorrhizal fungi (AMF). The structure of the microbial community also changed radically from that of the control group, and Chloroflexi (2.69 %-3.15 %), Actinobacteria (4.33 %-7.53 %) and Acidobacteria (9.44 %-11.62 %) were the dominant microorganisms at the phylum level in bacteria. In contrast, the dominant fungi at the phylum level were Ascomycota (77.39 %-78.08 %), Glomeromycota (0.36 %-2.68), Olpidiomycota (0.02 %-3.78 %) and Basidiomycota (0.80 %-1.17 %). Fusarium oxysporum and Ascomycota were biomarkers for BSFA and KHM, which may be related to pathogenic bacteria. Network analysis revealed that the association among members of the soil microbial community was more positive than negative following application of KHM, and more positive (62.5 %) than negative (37.5 %) correlations were observed between bacteria, whereas the fungal community exhibited more positive (97.3 %) than negative (2.7 %) correlations. PICRUST predicted the microbial function of adding KHM and BSFA to the soil, and these pathways mainly belong to the degradation and metabolism of organic matter, saprophytic organisms and plant pathogens. In summary, our study demonstrated that the addition of BSFA and KHM increased the nutrients in the ginseng soil and reshaped the microbial function in soils, providing a theoretical foundation for soil improvement and biological control of ginseng diseases. However, due to the limitations of greenhouse cultivation, additional long-term experiments on farmland with different climate changes are recommended.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Meijia Li
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hai Sun
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Ning Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
8
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
9
|
Li H, Wu Y, Liu W, Zhang XM, Gong JS, Shi JS, Xu ZH. iTRAQ-based quantitative proteomic analysis of Colletotrichum lini reveals ethanol induced mechanism for enhancing dihydroxylation efficiency of DHEA. J Proteomics 2020; 224:103851. [PMID: 32485395 DOI: 10.1016/j.jprot.2020.103851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/09/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Colletotrichum lini is used as an industrial stain for the dihydroxylation of steroid compound dehydroepiandrosterone (DHEA) to biosynthesize 3β,7α,15α-trihydroxy-5-androstene-17-one (7α,15α-diOH-DHEA), a key intermediate of the most popular oral contraceptive "Yasmin". This work aimed to enhance 7α,15α-diOH-DHEA production in C. lini CGMCC 6051 through ethanol induction. With 0.6% (v/v) ethanol induction and 10 g/L DHEA concentration, the 7α,15α-diOH-DHEA molar yield reached 58.8%, which was increased by 67.5% than that of the control. iTRAQ-based quantitative proteomic analysis was applied to explore the probable molecular mechanism of C. lini response to ethanol induction. A total of 50 differential expressed proteins was affected by ethanol induction, and could be related to multiple metabolic pathways. Most of differently expressed proteins were functionally mapped into pathways of transport, steroids metabolism, or redox reaction. Other proteins for energy, transcription and translation, and carbohydrate metabolism might have important roles in the cellular response to ethanol induction. In addition, the levels of cytochrome P450 and NAD(P)H-cytochrome P450 reductase were remarkably higher under ethanol induction, and their functions on DHEA dihydroxylation were first proposed in C. lini. Our results provide critical clues in revealing the dihydroxylation mechanism and are important for efficient microbiological hydroxylation of steroidal compounds in the future. BIOLOGICAL SIGNIFICANCE: iTRAQ strategy was first used to compare the proteomes of ethanol induction during the dihydroxylation reaction by Colletotrichum lini CGMCC 6051. The changes in protein provided a comprehensive overview of DHEA dihydroxylation in C. lini, including the proteins for steroids metabolism, redox reaction, transport, transcription and translation, energy and carbohydrate metabolism. Cytochrome P450, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase were highlighted due to their outstanding contribution to DHEA dihydroxylation. The results help us understand the molecular mechanism underlying ethanol induction in C. lini and would guide strain engineering to further improve dihydroxylation efficiency.
Collapse
Affiliation(s)
- Hui Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Xiao-Mei Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
11
|
Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins (Basel) 2019; 11:E328. [PMID: 31181628 PMCID: PMC6628439 DOI: 10.3390/toxins11060328] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022] Open
Abstract
The fumonisins producing fungi, Fusarium spp., are ubiquitous in nature and contaminate several food matrices that pose detrimental health hazards on humans as well as on animals. This has necessitated profound research for the control and management of the toxins to guarantee better health of consumers. This review highlights the chemistry and biosynthesis process of the fumonisins, their occurrence, effect on agriculture and food, along with their associated health issues. In addition, the focus has been put on the detection and management of fumonisins to ensure safe and healthy food. The main focus of the review is to provide insights to the readers regarding their health-associated food consumption and possible outbreaks. Furthermore, the consumers' knowledge and an attempt will ensure food safety and security and the farmers' knowledge for healthy agricultural practices, processing, and management, important to reduce the mycotoxin outbreaks due to fumonisins.
Collapse
Affiliation(s)
- Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India.
| | - Dipendra K Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Australia.
| | - Sheetal Devi
- SAB Miller India Ltd., Sonipat, Haryana 131001, India.
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Sang G Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea.
- Stemforce, 302 Institute of Industrial Technology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India.
| |
Collapse
|
12
|
Wu Y, Li T, Gong L, Wang Y, Jiang Y. Effects of Different Carbon Sources on Fumonisin Production and FUM Gene Expression by Fusarium proliferatum. Toxins (Basel) 2019; 11:toxins11050289. [PMID: 31121925 PMCID: PMC6563204 DOI: 10.3390/toxins11050289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/20/2023] Open
Abstract
Fusarium proliferatum can infect many crops and then produce fumonisins that are very harmful to humans and animals. Previous study indicates that carbon sources play important roles in regulating the fumonisin biosynthesis. Unfortunately, there is limited information on the effects of carbon starvation in comparison with the carbon sources present in the host of fumonisin production in F. proliferatum. Our results indicated that F. proliferatum cultivated in the Czapek's broth (CB) medium in the absence of sucrose could greatly induce production of fumonisin, while an additional supplementation of sucrose to the culture medium significantly reduced the fumonisin production. Furthermore, cellulose and hemicellulose, and polysaccharide extracted from banana peel, which replaced sucrose as the carbon source, can reduce the production of fumonisin by F. proliferatum. Further work showed that these genes related to the synthesis of fumonisin, such as FUM1 and FUM8, were significantly up-regulated in the culture medium in the absence of sucrose. Consistent with fumonisin production, the expressions of FUM gene cluster and ZFR1 gene decreased after the addition of sucrose. Moreover, these genes were also significantly down-regulated in the presence of cellulose, hemicellulose or polysaccharide extracted from peel. Altogether, our results suggested that fumonisin production was regulated in F. proliferatum in response to different carbon source conditions, and this regulation might be mainly via the transcriptional level. Future work on these expressions of the fumonisin biosynthesis-related genes is needed to further clarify the response under different carbon conditions during the infection of F. proliferatum on banana fruit hosts. The findings in this study will provide a new clue regarding the biological effect of the fumonisin production in response to environmental stress.
Collapse
Affiliation(s)
- Yu Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yong Wang
- Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528403, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
13
|
Li T, Wu Q, Duan X, Yun Z, Jiang Y. Proteomic and transcriptomic analysis to unravel the influence of high temperature on banana fruit during postharvest storage. Funct Integr Genomics 2019; 19:467-486. [DOI: 10.1007/s10142-019-00662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
|
14
|
Vismer HF, Shephard GS, van der Westhuizen L, Mngqawa P, Bushula-Njah V, Leslie JF. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro. Int J Food Microbiol 2019; 296:31-36. [PMID: 30826540 DOI: 10.1016/j.ijfoodmicro.2019.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
Maize (Zea mays), sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) are basic staple foods for many rural or poorer communities. These crops are susceptible to plant diseases caused by multiple species of Fusarium, some of which also produce mycotoxins, including fumonisins and moniliformin that are detrimental to both humans and domesticated animals. Eighteen potentially toxigenic Fusarium strains were isolated from maize (n = 10), sorghum (n = 7) and pearl millet (n = 1) growing in the same field in Nigeria. The 17 strains from maize and sorghum were all F. proliferatum and the one strain from pearl millet was F. pseudonygamai. Under conducive conditions, the 17 F. proliferatum strains produced fumonisins, 11 in relatively large quantities (700-17,000 mg total fumonisins, i.e., FB1 + FB2 + FB3/kg culture material), and six at <45 mg/kg. Ten F. proliferatum strains produced >100 mg of moniliformin per kg culture material with a maximum of 8900 mg/kg culture material. All strains could use all grains for growth and toxin production, regardless of the host from which they were isolated. Isolates varied in the amount of toxin produced on each substrate, with toxin production a property of the strain and not the host from which the strain was recovered. However, the extent to which a toxin-producing phenotype could be altered by the grain on which the fungus was grown is consistent with subtle genetic × environment interactions that require a larger data set than the one presented here to rigorously identify. In conclusion, there is significant variation in the ability of strains of F. proliferatum to produce fumonisins and moniliformin on maize, sorghum and millet. If the amount of toxin produced on the various grains in this study reflects real-world settings, e.g., poor storage, then the consumers of these contaminated grains could be exposed to mycotoxin levels that greatly exceed the tolerable daily intakes.
Collapse
Affiliation(s)
- Hester F Vismer
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Gordon S Shephard
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Liana van der Westhuizen
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Pamella Mngqawa
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Vuyiswa Bushula-Njah
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - John F Leslie
- Kansas State University, 4024 Throckmorton Plant Sciences Center, 1712 Claflin Avenue, Manhattan, KS 66506-5502, USA.
| |
Collapse
|
15
|
New insights into fumonisin production and virulence of Fusarium proliferatum underlying different carbon sources. Food Res Int 2019; 116:397-407. [DOI: 10.1016/j.foodres.2018.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
|
16
|
Sánchez-Rangel D, Hernández-Domínguez EE, Pérez-Torres CA, Ortiz-Castro R, Villafán E, Rodríguez-Haas B, Alonso-Sánchez A, López-Buenfil A, Carrillo-Ortiz N, Hernández-Ramos L, Ibarra-Laclette E. Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018; 19:721. [PMID: 30285612 PMCID: PMC6167834 DOI: 10.1186/s12864-018-5083-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.
Collapse
Affiliation(s)
- Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Eric-Edmundo Hernández-Domínguez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | | | - Abel López-Buenfil
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Nayeli Carrillo-Ortiz
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Lervin Hernández-Ramos
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| |
Collapse
|
17
|
Li T, Yun Z, Wu Q, Zhang Z, Liu S, Shi X, Duan X, Jiang Y. Proteomic profiling of 24-epibrassinolide-induced chilling tolerance in harvested banana fruit. J Proteomics 2018; 187:1-12. [DOI: 10.1016/j.jprot.2018.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
|
18
|
Li T, Wu Q, Wang Y, John A, Qu H, Gong L, Duan X, Zhu H, Yun Z, Jiang Y. Application of Proteomics for the Investigation of the Effect of Initial pH on Pathogenic Mechanisms of Fusarium proliferatum on Banana Fruit. Front Microbiol 2017; 8:2327. [PMID: 29250043 PMCID: PMC5715366 DOI: 10.3389/fmicb.2017.02327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
Fusarium proliferatum is an important pathogen and causes a great economic loss to fruit industry. Environmental pH-value plays a regulatory role in fungi pathogenicity, however, the mechanism needs further exploration. In this study, F. proliferatum was cultured under two initial pH conditions of 5 and 10. No obvious difference was observed in the growth rate of F. proliferatum between two pH-values. F. proliferatum cultured under both pH conditions infected banana fruit successfully, and smaller lesion diameter was presented on banana fruit inoculated with pH 10-cultured fungi. Proteomic approach based on two-dimensional electrophoresis (2-DE) was used to investigate the changes in secretome of this fungus between pH 5 and 10. A total of 39 differential spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Compared to pH 5 condition, proteins related to cell wall degrading enzymes (CWDEs) and proteolysis were significantly down-regulated at pH 10, while proteins related to oxidation-reduction process and transport were significantly up-regulated under pH 10 condition. Our results suggested that the downregulation of CWDEs and other virulence proteins in the pH 10-cultured F. proliferatum severely decreased its pathogenicity, compared to pH 5-cultured fungi. However, the alkaline environment did not cause a complete loss of the pathogenic ability of F. proliferatum, probably due to the upregulation of the oxidation-reduction related proteins at pH 10, which may partially compensate its pathogenic ability.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qixian Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Zhong Shan Entry-Exit Inspection and Quarantine Bureau, Zhong Shan, China
| | - Afiya John
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hong Zhu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Yun
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Li T, Gong L, Jiang G, Wang Y, Gupta VK, Qu H, Duan X, Wang J, Jiang Y. Carbon Sources Influence Fumonisin Production inFusarium proliferatum. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/21/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Yong Wang
- Zhong Shan Entry-Exit Inspection and Quarantine Bureau; Zhongshan P. R. China
| | - Vijai Kumar Gupta
- School of Science; Department of Chemistry and Biotechnology ERA Chair of Green Chemistry; Tallinn University of Technology; Tallinn Estonia
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Jiasheng Wang
- Department of Environmental Health Science College of Public Health; University of Georgia; Athens GA USA
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| |
Collapse
|