1
|
Costello A, Lao N, Clynes M, Barron N. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors. Methods Mol Biol 2025; 2853:71-84. [PMID: 39460915 DOI: 10.1007/978-1-0716-4104-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotypes in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA-binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for downregulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if the expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA sponge which is in theory expressed only in the presence of an inducer.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Nga Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Selvaprakash K, Sideri C, Henry M, Efeoglu E, Ryan D, Meleady P. Characterization of the Ubiquitin-Modified Proteome of Recombinant Chinese Hamster Ovary Cells in Response to Endoplasmic Reticulum Stress. Biotechnol J 2024; 19:e202400413. [PMID: 39623727 PMCID: PMC11612545 DOI: 10.1002/biot.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024]
Abstract
Chinese hamster ovary (CHO) cells remain the most widely used host cell line for biotherapeutics production. Despite their widespread use, understanding endoplasmic reticulum (ER) stress conditions in recombinant protein production remains limited, often creating bottlenecks preventing improved production titers and product quality. Ubiquitination not only targets substrates (e.g., misfolded proteins) for proteasome degradation but also has important regulatory control functions including cell cycle regulation, translation, apoptosis, autophagy, etc. and hence is likely to be central to understanding and controlling the productivity of recombinant biotherapeutics. This study aimed to uncover differentially expressed ubiquitinated proteins following artificial induction of ER-stress in recombinant CHO cells. CHO cells were treated with the stress inducer tunicamycin and the proteasome inhibitor MG132, followed by LC-MS/MS proteomic analysis. We identified >4000 ubiquitinated peptides from CHO-DP12 cells under ER stress conditions and proteasome inhibition. Moreover, data analysis showed altered abundance levels of >900 ubiquitinated proteins under the combination of ER stress and proteasome inhibition compared to untreated controls. Gene Ontology (GO) analysis of these ubiquitinated proteins resulted in a significant enrichment of key pathways involving the proteasome, protein processing in the ER, N-glycan biosynthesis, and ubiquitin-mediated proteolysis. ER stress response proteins such as GRP78, HSP90B1, ATF6, HERPUD1, and PDIA4 were found to be highly ubiquitinated and exhibited a significant increase in abundance following induction of ER-stress conditions. This study broadens our comprehension of the roles played by protein ubiquitination in CHO cell stress responses, potentially revealing targets for tailored cell line engineering aimed at enhancing stress tolerance and production efficiency.
Collapse
Affiliation(s)
| | - Christiana‐Kondylo Sideri
- Life Sciences InstituteDublin City UniversityDublinIreland
- School of BiotechnologyDublin City UniversityDublinIreland
| | - Michael Henry
- Life Sciences InstituteDublin City UniversityDublinIreland
| | - Esen Efeoglu
- Life Sciences InstituteDublin City UniversityDublinIreland
| | - David Ryan
- Life Sciences InstituteDublin City UniversityDublinIreland
- School of BiotechnologyDublin City UniversityDublinIreland
| | - Paula Meleady
- Life Sciences InstituteDublin City UniversityDublinIreland
- School of BiotechnologyDublin City UniversityDublinIreland
- SSPC the SFI Research Centre for PharmaceuticalsDublin City UniversityDublinIreland
| |
Collapse
|
3
|
Wu R, Kahl DM, Kloberdanz R, Rohilla KJ, Balasubramanian S. Demonstration of a robust high cell density transient CHO platform yielding mAb titers of up to 2 g/L without medium exchange. Biotechnol Prog 2024; 40:e3435. [PMID: 38329375 DOI: 10.1002/btpr.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Biopharmaceuticals like therapeutic monoclonal antibodies (mAbs) and other derived proteins are popular for treating various diseases. Transient gene expression (TGE) is typically used as a fast yet efficient method to generate moderate amounts of material. It has been used to support early stage research and discovery processes. Introduction of a robust high yielding and predictive TGE platform in Chinese hamster ovary (CHO) is crucial. It maintains the consistency in cell lines and processes throughout the early drug discovery and downstream manufacturing processes. This helps researchers to identify the issues at an early stage for timely resolution. In this study, we have demonstrated a simple high-titer platform for TGE in CHO based on a dilution process of seeding cells. We achieved titers ranging from 0.8 to 1.9 g/L for eight model mAbs at three scales (1, 30, 100 mL) in 10 days using our new platform. The ability to seed by dilution significantly streamlined the process and dramatically enhanced platform throughput. We observed a modest reduction in titer ranging from 11% to 28% when cells were seeded using dilution compared to when cells were seeded using medium exchange. Further studies revealed that carry over of spent medium into transfection negatively affected the DNA uptake and transcription processes, while the translation and secretion was minimally impacted. In summary, our transient CHO platform using cells prepared by dilution at high densities can achieve high titers of up to 1.9 g/L, which can be further improved by targeting the bottlenecks of transfection and transcription.
Collapse
Affiliation(s)
- Rigumula Wu
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Danielle M Kahl
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Ronald Kloberdanz
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Kushal J Rohilla
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Sowmya Balasubramanian
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| |
Collapse
|
4
|
Jari M, Abdoli S, Bazi Z, Shamsabadi FT, Roshanmehr F, Shahbazi M. Enhancing protein production and growth in chinese hamster ovary cells through miR-107 overexpression. AMB Express 2024; 14:16. [PMID: 38302631 PMCID: PMC10834913 DOI: 10.1186/s13568-024-01670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Chinese Hamster Ovary (CHO) cells are widely employed as host cells for biopharmaceutical production. The manufacturing of biopharmaceuticals poses several challenges, including restricted growth potential and inadequate productivity of the host cells. MicroRNAs play a crucial role in regulating gene expression and are considered highly promising tools for cell engineering to enhance protein production. Our study aimed to evaluate the effects of miR-107, which is recognized as an onco-miR, on erythropoietin-producing CHO cells (CHO-hEPO). To assess the impact of miR-107 on CHO cells, a DNA plasmid containing miR-107 was introduced to CHO-hEPO cells through transfection. Cell proliferation and viability were assessed using the trypan blue dye exclusion method. Cell cycle analysis was conducted by utilizing propidium iodide (PI) staining. The quantification of EPO was determined using an immunoassay test. Moreover, the impact of miR-107 on the expression of downstream target genes was evaluated using qRT-PCR. Our findings highlight and underscore the substantial impact of transient miR-107 overexpression, which led to a remarkable 2.7-fold increase in EPO titers and a significant 1.6-fold increase in the specific productivity of CHO cells (p < 0.01). Furthermore, this intervention resulted in significant enhancements in cell viability and growth rate (p < 0.05). Intriguingly, the overexpression of miR‑107 was linked to the downregulation of LATS2, PTEN, and TSC1 genes while concurrently driving upregulation in transcript levels of MYC, YAP, mTOR, and S6K genes within transgenic CHO cells. In conclusion, this study collectively underscores the feasibility of utilizing cancer-associated miRNAs as a powerful tool for CHO cell engineering. However, more in-depth exploration is warranted to unravel the precise molecular intricacies of miR-107's effects in the context of CHO cells.
Collapse
Affiliation(s)
- Maryam Jari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Roshanmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran.
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Gorgan, Iran.
| |
Collapse
|
5
|
Kellner K, Lao NT, Barron N. CRISPR Deletion of miR-27 Impacts Recombinant Protein Production in CHO Cells. Methods Mol Biol 2024; 2810:285-300. [PMID: 38926286 DOI: 10.1007/978-1-0716-3878-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.
Collapse
Affiliation(s)
- Kevin Kellner
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Nga T Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Nguyen M, Zimmer A. A reflection on the improvement of Chinese Hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 2023; 65:108141. [PMID: 37001570 DOI: 10.1016/j.biotechadv.2023.108141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host for the large-scale production of recombinant proteins in the biopharmaceutical industry. Research endeavors have been directed to the optimization of CHO-based bioprocesses to increase protein quantity and quality, often in an empirical manner. To provide a rationale for those achievements, a myriad of CHO proteomic studies has arisen in recent decades. This review gives an overview of significant advances in LC-MS-based proteomics and sheds light on CHO proteomic studies, with a particular focus on CHO cells with superior bioprocessing phenotypes (growth, viability, titer, productivity and cQA), that have exploited novel proteomic or sub-omic techniques. These proteomic findings expand the current knowledge and understanding about the underlying protein clusters, protein regulatory networks and biological pathways governing such phenotypic changes. The proteomic studies, highlighted herein, will help in the targeted modulation of these cell factories to the desired needs.
Collapse
|
7
|
Liu HN, Dong WH, Lin Y, Zhang ZH, Wang TY. The Effect of microRNA on the Production of Recombinant Protein in CHO Cells and its Mechanism. Front Bioeng Biotechnol 2022; 10:832065. [PMID: 35387297 PMCID: PMC8977551 DOI: 10.3389/fbioe.2022.832065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recombinant protein production by mammalian cells is the initial step in the manufacture of many therapeutic proteins. Chinese hamster ovary (CHO) cells are the most common host system to produce recombinant therapeutic proteins (RTPs). However, it is still challenging to maintain high productivity ensuring the good quality of RTPs produced by CHO cells. MicroRNAs(miRNAs) are short regulatory non-coding RNAs that can regulate cellular behavior and complex phenotypes. It has been found that miRNAs can enhance the expression level of recombinant proteins in CHO cells by promoting proliferation, resisting apoptosis, and regulating metabolism. miRNAs also can affect the quality of RTPs. In this review, we will discuss the effect and mechanism of miRNA on the expression level and quality of recombinant proteins in CHO cells.
Collapse
Affiliation(s)
- Hui-Ning Liu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Wei-Hua Dong
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Xinxiang, China
| | - Yan Lin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhao-Hui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Insights into the Impact of Rosmarinic Acid on CHO Cell Culture Improvement through Transcriptomics Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The use of antioxidants in Chinese hamster ovary (CHO) cell cultures to improve monoclonal antibody production has been a topic of great interest. Nevertheless, the antioxidants do not have consistent benefits of production improvement, which might be cell line specific and/or process specific. In this work, we investigated how treatment with the antioxidant rosmarinic acid (RA) improved cell growth and titer in CHO cell cultures using transcriptomics. In particular, transcriptomics analysis indicated that RA treatment modified gene expression and strongly affected the MAPK and PI3K/Akt signaling pathways, which regulate cell survival and cell death. Moreover, it was observed that these signaling pathways, which had been identified to be up-regulated on day 2 and day 6 by RA, were also up-regulated over time (from initial growth phase day 2 to slow growth or protein production phase day 6) in both conditions. In summary, this transcriptomics analysis provides insights into the role of the antioxidant RA in industrial cell culture processes. The current study also represents an example in the industry of how omics can be applied to gain an in-depth understanding of CHO cell biology and to identify critical pathways that can contribute to cell culture process improvement and cell line engineering.
Collapse
|
9
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
10
|
MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans 2021; 48:595-612. [PMID: 32267487 PMCID: PMC7200637 DOI: 10.1042/bst20190854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.
Collapse
|
11
|
Leroux AC, Bartels E, Winter L, Mann M, Otte K, Zehe C. Transferability of miRNA-technology to bioprocessing: Influence of cultivation mode and media. Biotechnol Prog 2020; 37:e3107. [PMID: 33300297 PMCID: PMC8244005 DOI: 10.1002/btpr.3107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed‐batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed‐batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR‐1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose‐dependent manner during transient batch cultivation. Cells stably overexpressing miR‐1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in‐house medium 1. However, when the cells stably overexpressing miR‐1 were cultivated in fed‐batch mode using in‐house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.
Collapse
Affiliation(s)
- Ann-Cathrin Leroux
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Elisabeth Bartels
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Operations, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Luise Winter
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Upstream Process Development, Rentschler Biopharma, Laupheim, Germany
| | - Melanie Mann
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Kerstin Otte
- Biology, Cell- and Molecular Biology, Biberach University of Applied Sciences, Biberach an der Riß, Germany
| | - Christoph Zehe
- Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany
| |
Collapse
|
12
|
O'Doherty C, O'Sullivan F, Henry M, Meleady P, Clynes M, Horgan K, Keenan J, Murphy R. LC-MS proteomic profiling of Caco-2 human intestinal cells exposed to the copper-chelating agent, triethylenetetramine: A preliminary study. Biochem Biophys Res Commun 2020; 524:847-852. [PMID: 32046857 DOI: 10.1016/j.bbrc.2020.01.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/01/2022]
Abstract
Homeostasis of metal micronutrients such as copper is tightly regulated to ensure deficiency does not occur while restricting damage resulting from excess accumulation. Using LC-MS the effect on the proteome of intestinal Caco-2 cells of exposure to the chelator triethylenetetramine (TETA) was investigated. Continuous exposure of TETA at 25 μM to Caco-2 cells caused decreased cell yields and morphological changes. These effects were reversed when cells were no longer exposed to TETA. Quantitative proteomic analysis identified 957 mostly low-fold differentially expressed proteins, 41 of these returned towards control Caco-2 expression following recovery. Proteins exhibiting this "reciprocal" behaviour included upregulated deoxyhypusine hydroxylase (DOHH, 15.69- fold), a protein essential for eIF-5A factor hypsuination, a post translational modification responsible for eIF-5A maturation, which in turn is responsible for translation elongation. Exposure to TETA also resulted in 87 proteins, the expression of which was stable and remained differentially expressed following recovery. This study helps to elucidate the stable and transient proteomic effects of TETA exposure in intestinal cells.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland.
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
13
|
Li Y, Chen F, Shen W, Li B, Xiang R, Qu L, Zhang C, Li G, Xie H, Katanaev VL, Jia L. WDR74 induces nuclear β-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Lett 2020; 471:103-115. [PMID: 31838084 DOI: 10.1016/j.canlet.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer has been notorious for its lack of advance in clinical therapy, urging for effective therapeutic targets. WD repeat-containing protein 74 (WDR74) has previously been implicated in tumorigenesis, but its mechanistic functions remain not well understood. Herein, WDR74 expression was observed to be increased upon lung cancer progression from healthy normal tissues to the primary cancer and further to the metastatic cancer. Through gain- and loss-of-function approaches, we found that WDR74 regulated lung cancer cell proliferation, cell cycle progression, chemoresistance and cell aggressiveness in vitro. Moreover, a xenograft mouse model disclosed that WDR74 knockout inhibited lung cancer growth and metastasis, whereas WDR74 overexpression reciprocally enhanced these characteristics. Mechanistically, WDR74 promoted nuclear β-catenin accumulation and drove downstream Wnt-responsive genes, thus revealing that WDR74 activated the Wnt/β-catenin signaling pathway. Collectively, WDR74 inducing nuclear β-catenin accumulation and driving the downstream Wnt-responsive genes expression facilitates lung cancer growth and metastasis. WDR74 can serve as a candidate target for the prevention and treatment of lung cancer in clinic.
Collapse
Affiliation(s)
- Yumei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Fan Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Weiyu Shen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Rong Xiang
- Department of Pathology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, 350025, China
| | - Lijuan Qu
- Department of Pathology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, 350025, China
| | - Chen Zhang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Gao Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Huanzhang Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Vladimir L Katanaev
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Switzerland.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
14
|
O'Doherty C, Keenan J, Henry M, Meleady P, Sinkunaite I, Clynes M, O'Sullivan F, Horgan K, Murphy R. Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line. Toxicol In Vitro 2020; 65:104773. [PMID: 31981602 DOI: 10.1016/j.tiv.2020.104773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Studies in hepatic systems identify multiple factors involved in the generation of copper resistance. As the intestine is the route of exposure to dietary copper, we wanted to understand how intestinal cells overcome the toxic effects of high copper and what mechanisms of resistance develop. Using the intestinal cell line Caco-2, resistance was developed by serial subculture in 50 μM copper in inorganic (CuSO4) or organic (Cu proteinate) forms. Caco-2 variants exhibited resistance to copper and retained the non-monotonic dose response while displaying stable phenotypes following repeated subculture in the absence of copper. Phenotypic changes on exposure to copper in parental Caco-2 cells included significantly increased total protein yield, ROS, SOD, metallothionein expression, GSH and total glutathione. These phenotypic changes were not replicated in resistant variants on a per cell basis. Quantitative label-free LC-MS/MS proteomic analysis identified 1113 differentially expressed proteins (DEPs) between parental Caco-2 and resistant cells. With some exceptions, most of the DEPs were overexpressed to a low level around 2-fold suggesting resistance was supported by multiple small changes in protein expression. These variants may be a useful tool in studying the toxicity of stress responses in further Cu-related studies.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Indre Sinkunaite
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|