1
|
Carrera-Aubesart A, Li J, Contreras E, Bello-Madruga R, Torrent M, Andreu D. From In Vitro Promise to In Vivo Reality: An Instructive Account of Infection Model Evaluation of Antimicrobial Peptides. Int J Mol Sci 2024; 25:9773. [PMID: 39337261 PMCID: PMC11431785 DOI: 10.3390/ijms25189773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics in the face of ever-increasing resistance. However, many AMPs fail to progress into clinics due to unexpected difficulties found in preclinical in vivo phases. Our research has focused on crotalicidin (Ctn), an AMP from snake venom, and a fragment thereof, Ctn[15-34], with improved in vitro antimicrobial and anticancer activities and remarkable serum stability. As the retroenantio versions of both AMPs maintained favorable profiles, in this work, we evaluate the in vivo efficacy of both the native-sequence AMPs and their retroenantio counterparts in a murine infection model with Acinetobacter baumannii. A significant reduction in bacterial levels is found in the mice treated with Ctn[15-34]. However, contrary to expectations, the retroenantio analogs either exhibit toxicity or lack efficacy when administered to mice. Our findings underscore the critical importance of in vivo infection model evaluation to fully calibrate the therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Estefanía Contreras
- Integrated Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Bello-Madruga
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Hernández-Arvizu EE, Asada M, Kawazu SI, Vega CA, Rodríguez-Torres A, Morales-García R, Pavón-Rocha AJ, León-Ávila G, Rivas-Santiago B, Mosqueda J. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens 2024; 13:496. [PMID: 38921794 PMCID: PMC11206629 DOI: 10.3390/pathogens13060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by Babesia protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal agents. Antimicrobial peptides, specifically cathelicidins known for their broad-spectrum activity and immunomodulatory functions, have emerged as potential candidates. Aquiluscidin, a cathelicidin from Crotalus aquilus, and its derivative Vcn-23, have been of interest due to their previously observed antibacterial effects and non-hemolytic activity. This work aimed to characterize the effect of these peptides against three Babesia species. Results showed Aquiluscidin's significant antimicrobial effects on Babesia species, reducing the B. bigemina growth rate and exhibiting IC50 values of 14.48 and 20.70 μM against B. ovata and B. bovis, respectively. However, its efficacy was impacted by serum presence in culture, and it showed no inhibition against a B. bovis strain grown in serum-supplemented medium. Conversely, Vcn-23 did not demonstrate babesiacidal activity. In conclusion, Aquiluscidin shows antibabesia activity in vitro and its efficacy is affected by the presence of serum in the culture medium. Nevertheless, this peptide represents a candidate for further investigation of its antiparasitic properties and provides insights into potential alternatives for the treatment of babesiosis.
Collapse
Affiliation(s)
- Edwin Esaú Hernández-Arvizu
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
- PhD Program in Natural Sciences, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medcine, Inadacho, Nishi 2-13, Obihiro 080-8555, Hokkaido, Japan; (M.A.); (S.-I.K.)
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medcine, Inadacho, Nishi 2-13, Obihiro 080-8555, Hokkaido, Japan; (M.A.); (S.-I.K.)
| | - Carlos Agustín Vega
- Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (C.A.V.); (A.R.-T.)
| | - Angelina Rodríguez-Torres
- Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (C.A.V.); (A.R.-T.)
| | - Rodrigo Morales-García
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| | - Aldo J. Pavón-Rocha
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| | - Gloria León-Ávila
- Department of Zoology, National School of Biological Sciences, National Polytechnic Institute, Carpio y Plan de Ayala S/N, C.P. 11340, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas-Instituto Mexicano del Seguro Social, Zacatecas 98053, Mexico;
| | - Juan Mosqueda
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| |
Collapse
|
3
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
4
|
Carrera-Aubesart A, Defaus S, Pérez-Peinado C, Sandín D, Torrent M, Jiménez MÁ, Andreu D. Examining Topoisomers of a Snake-Venom-Derived Peptide for Improved Antimicrobial and Antitumoral Properties. Biomedicines 2022; 10:2110. [PMID: 36140211 PMCID: PMC9495681 DOI: 10.3390/biomedicines10092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ctn[15-34], the C-terminal section of crotalicidin (Ctn), a cathelicidin from a South American pit viper, is an antimicrobial and antitumoral peptide with remarkably longer stability in human serum than the parent Ctn. In this work, a set of topoisomers of both Ctn and Ctn[15-34], including the retro, enantio, and retroenantio versions, were synthesized and tested to investigate the structural requirements for activity. All topoisomers were as active as the cognate sequences against Gram-negative bacteria and tumor cells while slightly more toxic towards normal cells. More importantly, the enhanced serum stability of the D-amino-acid-containing versions suggests that such topoisomers must be preferentially considered as future antimicrobial and anticancer peptide leads.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Sira Defaus
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Daniel Sandín
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Ángeles Jiménez
- Institute of Physical Chemistry “Rocasolano” (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Long C, Wu F, Lu Q, Xie B, Shen C, Li J, Deng Y, Liang P, Yu Y, Lai R. A Strategy for Efficient Preparation of Genus-Specific Diagnostic Antibodies for Snakebites. Front Immunol 2021; 12:775678. [PMID: 34899734 PMCID: PMC8660121 DOI: 10.3389/fimmu.2021.775678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.
Collapse
Affiliation(s)
- Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural bioactive Peptides, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Feilong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural bioactive Peptides, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural bioactive Peptides, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Bing Xie
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Chuanbin Shen
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Jiayao Li
- Clinical Laboratory, Hospital of Traditional Chinese Medicine of Wuzhou, Wuzhou, China
| | - Yanling Deng
- Clinical Laboratory, Hospital of Traditional Chinese Medicine of Wuzhou, Wuzhou, China
| | - Ping Liang
- Clinical Laboratory, Hospital of Traditional Chinese Medicine of Wuzhou, Wuzhou, China
| | - Yongzhi Yu
- Clinical Laboratory, Hospital of Traditional Chinese Medicine of Wuzhou, Wuzhou, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural bioactive Peptides, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Badia-Villanueva M, Defaus S, Foj R, Andreu D, Oliva B, Sierra A, Fernandez-Fuentes N. Evaluation of Computationally Designed Peptides against TWEAK, a Cytokine of the Tumour Necrosis Factor Ligand Family. Int J Mol Sci 2021; 22:ijms22031066. [PMID: 33494438 PMCID: PMC7866087 DOI: 10.3390/ijms22031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor–inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal. The targeting of protein-protein interactions by external agents, e.g., drugs, remains a substantial challenge. Given their intrinsic features, as well as recent advances that improve their pharmacological profiles, peptides have arisen as promising agents in this regard. Here, we report, by in silico structural design validated by cell-based and in vitro assays, the discovery of four peptides able to target TWEAK. Our results show that, when added to TWEAK-dependent cellular cultures, peptides cause a down-regulation of genes that are part of TWEAK-Fn14 signalling pathway. The direct, physical interaction between the peptides and TWEAK was further elucidated in an in vitro assay which confirmed that the bioactivity shown in cell-based assays was due to the targeting of TWEAK. The results presented here are framed within early pre-clinical drug development and therefore these peptide hits represent a starting point for the development of novel therapeutic agents. Our approach exemplifies the powerful combination of in silico and experimental efforts to quickly identify peptides with desirable traits.
Collapse
Affiliation(s)
- Miriam Badia-Villanueva
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - Sira Defaus
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Ruben Foj
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - David Andreu
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, Pompeu Fabra University, Biomedical Research Park, 08003 Barcelona, Spain;
| | - Angels Sierra
- Laboratory of Oncological Neurosurgery, Hospital Clinic de Barcelona—IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (A.S.); (N.F.-F.)
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic 08500 Catalonia, Spain
- Correspondence: (A.S.); (N.F.-F.)
| |
Collapse
|
7
|
Pérez-Peinado C, Valle J, Freire JM, Andreu D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn[15-34]: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem Biol 2020; 15:2945-2957. [PMID: 33021779 DOI: 10.1021/acschembio.0c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crotalicidin (Ctn) and its fragment Ctn[15-34] are snake-venom-derived, cathelicidin-related peptides outstanding for their promising antimicrobial, antifungal, and antitumoral properties. In this study, we describe their membranolytic mechanisms as well as their putative interference with intracellular targets, both contributing to their antitumoral action against a pro-monocytic leukemia cell line. Initial flow cytometry assays demonstrated peptide ability to induce tumor cell membrane permeabilization and caspase-dependent apoptosis, without total activity reduction by serum proteases up to 24 h (Ctn) and 18 h (Ctn[15-34]). In addition, both Ctn and Ctn[15-34] showed preference for tumor cells rather than healthy cells, with selectivity ratios (tumoral vs healthy cells) of 17 and 7, respectively. Further microscopy and flow cytometry studies suggested their preferential accumulation in the cytoplasmic membrane and nucleus and proposed multiple predominant routes of peptide uptake, including direct entry and endocytosis. Affinity purification followed by proteomic identification experiments revealed both peptides to interact with proteins involved in DNA and protein metabolism, cell cycles, signal transduction, and/or programmed cell death, among others. These results suggest a putative role of Ctn and Ctn[15-34] to interact with key intracellular pathways, ultimately contributing to tumor cell death by necrosis/apoptosis. Altogether, this work proposes a dual mechanism underlying the antitumoral activity of Ctn and Ctn[15-34] and reinforces their potential as future therapeutic drugs.
Collapse
Affiliation(s)
- Clara Pérez-Peinado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Javier Valle
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - João M. Freire
- Drug Product Development, Janssen Vaccines and Prevention, Newtonweg 1, 2333-CP Leiden, The Netherlands
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. SCIENCE ADVANCES 2020; 6:eaay6817. [PMID: 32426473 PMCID: PMC7195177 DOI: 10.1126/sciadv.aay6817] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/12/2020] [Indexed: 05/14/2023]
Abstract
The rising prevalence of antibiotic resistance underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) are potentially effective therapeutics that disrupt bacterial membranes regardless of resistance to traditional antibiotics. We have developed engineered cationic AMPs (eCAPs) with broad activity against multidrug-resistant (MDR) bacteria, but stability remains an important concern. Therefore, we sought to enhance the clinical utility of eCAP WLBU2 in biological matrices relevant to respiratory infection. A designed substitution of d-Val for l-Val resulted in increased resistance to protease enzymatic degradation. We observed multiple gains of functions such as higher activity against bacteria in biofilm mode of growth, significantly lower toxicity to erythrocytes and white blood cells compared to WLBU2, with increased safety in mice. Direct airway delivery revealed a therapeutic index of >140 for the selected enantiomer compared to that of <35 for WLBU2. The data warrant clinical exploration by aerosolized delivery to mitigate MDR-related respiratory infection.
Collapse
Affiliation(s)
- Y. P. Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author.
| | - Q. Lin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - C. Chen
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y. Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - B. Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins (Basel) 2020; 12:toxins12040255. [PMID: 32326531 PMCID: PMC7232197 DOI: 10.3390/toxins12040255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract For decades, natural products in general and snake venoms (SV) in particular have been a rich source of bioactive compounds for drug discovery, and they remain a promising substrate for therapeutic development. Currently, a handful of SV-based drugs for diagnosis and treatment of various cardiovascular disorders and blood abnormalities are on the market. Likewise, far more SV compounds and their mimetics are under investigation today for diverse therapeutic applications, including antibiotic-resistant bacteria and cancer. In this review, we analyze the state of the art regarding SV-derived compounds with therapeutic potential, focusing on the development of antimicrobial and anticancer drugs. Specifically, information about SV peptides experimentally validated or predicted to act as antimicrobial and anticancer peptides (AMPs and ACPs, respectively) has been collected and analyzed. Their principal activities both in vitro and in vivo, structures, mechanisms of action, and attempts at sequence optimization are discussed in order to highlight their potential as drug leads. Key Contribution This review describes the state of the art in snake venom-derived peptides and their therapeutic applications. This work reinforces the potential of snake venom components as therapeutic agents, particularly in the quest for new antimicrobial and anticancer drugs.
Collapse
|
10
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
11
|
Pérez‐Peinado C, Dias SA, Mendonça DA, Castanho MA, Veiga AS, Andreu D. Structural determinants conferring unusual long life in human serum to rattlesnake‐derived antimicrobial peptide Ctn[15‐34]. J Pept Sci 2019; 25:e3195. [DOI: 10.1002/psc.3195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Clara Pérez‐Peinado
- Department of Experimental and Health ScienceUniversitat Pompeu Fabra, Barcelona Biomedical Research Park Barcelona 08003 Spain
| | - Susana A. Dias
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisbon 1649‐028 Portugal
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisbon 1649‐028 Portugal
| | - Miguel A.R.B. Castanho
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisbon 1649‐028 Portugal
| | - Ana S. Veiga
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisbon 1649‐028 Portugal
| | - David Andreu
- Department of Experimental and Health ScienceUniversitat Pompeu Fabra, Barcelona Biomedical Research Park Barcelona 08003 Spain
| |
Collapse
|