1
|
Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Ramos Y, Rice SJ, Ali SA, Pastrello C, Jurisica I, Thomas Appleton C, Rockel JS, Kapoor M. Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage 2024; 32:385-397. [PMID: 38049029 DOI: 10.1016/j.joca.2023.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Yolande Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada.
| |
Collapse
|
2
|
Fan X, Sun AR, Young RSE, Afara IO, Hamilton BR, Ong LJY, Crawford R, Prasadam I. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res 2024; 12:7. [PMID: 38311627 PMCID: PMC10838951 DOI: 10.1038/s41413-023-00304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Reuben S E Young
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, Australia
| | - Louis Jun Ye Ong
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Dong C, Richardson LT, Solouki T, Murray KK. Infrared Laser Ablation Microsampling with a Reflective Objective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:463-470. [PMID: 35104132 PMCID: PMC8895455 DOI: 10.1021/jasms.1c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A Schwarzschild reflective objective with a numerical aperture of 0.3 and working distance of 10 cm was used for laser ablation sampling of tissue for off-line mass spectrometry. The objective focused the laser to a diameter of 5 μm and produced 10 μm ablation spots on thin ink films and tissue sections. Rat brain tissue sections 50 μm thick were ablated in transmission geometry, and the ablated material was captured in a microcentrifuge tube containing solvent. Proteins from ablated tissue sections were quantified with a Bradford assay, which indicated that approximately 300 ng of protein was captured from a 1 mm2 area of ablated tissue. Areas of tissue ranging from 0.01 to 1 mm2 were ablated and captured for bottom-up proteomics. Proteins were extracted from the captured tissue and digested for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for peptide and protein identification.
Collapse
Affiliation(s)
- Chao Dong
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Luke T. Richardson
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Touradj Solouki
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kermit K. Murray
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Fan X, Wu X, Trevisan Franca De Lima L, Stehbens S, Punyadeera C, Webb R, Hamilton B, Ayyapann V, McLauchlan C, Crawford R, Zheng M, Xiao Y, Prasadam I. The deterioration of calcified cartilage integrity reflects the severity of osteoarthritis-A structural, molecular, and biochemical analysis. FASEB J 2022; 36:e22142. [PMID: 35032407 DOI: 10.1096/fj.202101449r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
The calcified cartilage zone (CCZ) is a thin interlayer between the hyaline articular cartilage and the subchondral bone and plays an important role in maintaining the joint homeostasis by providing biological and mechanical support from unmineralized cartilage to the underlying mineralized subchondral bone. The hallmark of CCZ characteristics in osteoarthritis (OA) is less well known. The aim of our study is to evaluate the structural, molecular, and biochemical composition of CCZ in tissues affected by primary knee OA and its relationship with disease severity. We collected osteochondral tissue samples stratified according to disease severity, from 16 knee OA patients who underwent knee replacement surgery. We also used meniscectomy-induced rat samples to confirm the pathophysiologic changes of human samples. We defined the characteristics of the calcified cartilage layer using a combination of morphological, biochemical, proteomic analyses on laser micro-dissected tissue. Our results demonstrated that the Calcium/Phosphate ratio is unchanged during the OA progression, but the calcium-binding protein and cadherin binding protein, as well as carbohydrate metabolism-related proteins, undergo significant changes. These changes were further accompanied by thinning of the CCZ, loss of collagen and proteoglycan content, the occurrence of the endochondral ossification, neovasculature, loss of the elastic module, loss of the collagen direction, and increase of the tortuosity indicating an altered structural and mechanical properties of the CCZ in OA. In conclusion, our results suggest that the calcified cartilage changes can reflect the disease progression.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Samantha Stehbens
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Richard Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Brett Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Vijay Ayyapann
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Connor McLauchlan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Lawal RO, Richardson LT, Dong C, Donnarumma F, Solouki T, Murray KK. Deep-ultraviolet laser ablation sampling for proteomic analysis of tissue. Anal Chim Acta 2021; 1184:339021. [PMID: 34625253 DOI: 10.1016/j.aca.2021.339021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
Deep-ultraviolet laser ablation with a pulsed 193 nm ArF excimer laser was used to remove localized regions from tissue sections from which proteins were extracted for spatially resolved proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). The ability to capture intact proteins by ablation at 193 nm wavelength was verified by matrix-assisted laser desorption ionization (MALDI) of the protein standard bovine serum albumin (BSA), which showed that BSA was ablated and captured without fragmentation. A Bradford assay of the ablated and captured proteins indicated 90% efficiency for transfer of the intact protein at a laser fluence of 3 kJ/m2. Rat brain tissue sections mounted on quartz microscope slides and ablated in transmission mode yielded 2 μg protein per mm2 as quantified by the Bradford assay. Tissue areas ranging from 0.06 mm2 to 1 mm2 were ablated and the ejected material was collected for proteomic analysis. Extracted proteins were digested and the resulting peptides were analyzed by LC-MS/MS. The proteins extracted from the ablated areas were identified and the average number of identified proteins ranged from 85 in the 0.06 mm2 area to 2400 in the 1 mm2 area of a 50 μm thick tissue. In comparison to infrared laser ablation of equivalent sampled areas, both the protein mass and number of proteins identified using DUV laser ablation sampling were approximately four times larger.
Collapse
Affiliation(s)
- Remilekun O Lawal
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Luke T Richardson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Jiang M, Xu K, Ren H, Wang M, Hou X, Cao J. Role of lincRNA-Cox2 targeting miR-150 in regulating the viability of chondrocytes in osteoarthritis. Exp Ther Med 2021; 22:800. [PMID: 34093756 PMCID: PMC8170664 DOI: 10.3892/etm.2021.10232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease characterised by progressive cartilage degradation and inflammation, but the detailed pathogenesis of OA remains unclear. The present study aimed to investigate the role of long intergenic non-coding RNA (lincRNA)-Cox2 in OA progression and the potential mechanism. An OA mouse model was used for in vivo experiments, and IL-1β-induced injury of mouse chondrocytes was conducted for in vitro experiments. Small interfering (si)-Cox2 was transfected into chondrocytes to elucidate the effect of lincRNA-Cox2 on OA. Quantitative reverse transcription PCR assays were conducted to detect the expression of lincRNA-Cox2 and microRNA (miR)-150. Cell proliferation and apoptosis were analysed based on an MTT assay and annexin V/propidium iodide staining, respectively. Western blotting was performed to evaluate the protein expression levels of Ki-67, PCNA, Bax, cleaved (c)-Caspase-3, c-Caspase-9 and Wnt/β-catenin pathway-associated proteins in chondrocytes. High levels of lincRNA-Cox2 were observed in cartilage tissues of the OA mouse model in vivo. In the in vitro experiments, the expression of lincRNA-Cox2 was increased in IL-1β-treated chondrocytes. Knockdown of lincRNA-Cox2 promoted the proliferation and inhibited the apoptosis of chondrocytes. Mechanistically, lincRNA-Cox2 was found to directly target miR-150, acting as a competing endogenous RNA, and the effect of si-Cox2 on the proliferation and apoptosis of chondrocytes was reversed by miR-150 inhibitors. Moreover, lincRNA-Cox2 activated the Wnt/β-catenin pathway to regulate chondrocyte proliferation and apoptosis. The present study demonstrated that silencing lincRNA-Cox2 expression plays a protective role in OA by enhancing the proliferation and suppressing the apoptosis of chondrocytes, which is related to increased miR-150 expression and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Orthopaedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Kai Xu
- Department of Orthopaedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Huafeng Ren
- Department of Functional Examination, Qingdao Haici Medical Group, Qingdao, Shandong 266033, P.R. China
| | - Mingmin Wang
- Department of Orthopaedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Ximin Hou
- Department of Orthopaedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Jianping Cao
- Department of Anesthesiology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
7
|
McLaughlin N, Bielinski TM, Tressler CM, Barton E, Glunde K, Stumpo KA. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2452-2461. [PMID: 32841002 DOI: 10.1021/jasms.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using citrate-capped gold nanoparticles (AuNPs) for laser desorption ionization mass spectrometry (LDI-MS) is an approach that has demonstrated broad applicability to ionization of different classes of molecules. Here, we show a simple AuNP-based approach for the ionization of neurotransmitters. Specifically, the detection of acetylcholine, dopamine, epinephrine, glutamine, 4-aminobutyric acid, norepinephrine, octopamine, and serotonin was achieved at physiologically relevant concentrations in serum and homogenized tissue. Additionally, pneumatic spraying of AuNPs onto tissue sections facilitated mass spectrometry imaging (MSI) of rabbit brain tissue sections, zebrafish embryos, and neuroblastoma cells for several neurotransmitters simultaneously using this quick and simple sample preparation. AuNP LDI-MS achieved mapping of neurotransmitters in fine structures of zebrafish embryos and neuroblastoma cells at a lateral spatial resolution of 5 μm. The use of AuNPs to ionize small aminergic neurotransmitters in situ provides a fast, high-spatial resolution method for simultaneous detection of a class of molecules that typically evade comprehensive detection with traditional matrixes.
Collapse
Affiliation(s)
- Nolan McLaughlin
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Tyler M Bielinski
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Caitlin M Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eric Barton
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Katherine A Stumpo
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| |
Collapse
|