1
|
Enax J, Ganss B, Amaechi BT, Schulze zur Wiesche E, Meyer F. The composition of the dental pellicle: an updated literature review. FRONTIERS IN ORAL HEALTH 2023; 4:1260442. [PMID: 37899941 PMCID: PMC10600522 DOI: 10.3389/froh.2023.1260442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background The dental pellicle is a thin layer of up to several hundred nm in thickness, covering the tooth surface. It is known to protect the teeth from acid attacks through its selective permeability and it is involved in the remineralization process of the teeth. It functions also as binding site and source of nutrients for bacteria and conditioning biofilm (foundation) for dental plaque formation. Methods For this updated literature review, the PubMed database was searched for the dental pellicle and its composition. Results The dental pellicle has been analyzed in the past years with various state-of-the art analytic techniques such as high-resolution microscopic techniques (e.g., scanning electron microscopy, atomic force microscopy), spectrophotometry, mass spectrometry, affinity chromatography, enzyme-linked immunosorbent assays (ELISA), and blotting-techniques (e.g., western blot). It consists of several different amino acids, proteins, and proteolytic protein fragments. Some studies also investigated other compounds of the pellicle, mainly fatty acids, and carbohydrates. Conclusions The dental pellicle is composed mainly of different proteins, but also fatty acids, and carbohydrates. Analysis with state-of-the-art analytical techniques have uncovered mainly acidic proline-rich proteins, amylase, cystatin, immunoglobulins, lysozyme, and mucins as main proteins of the dental pellicle. The pellicle has protective properties for the teeth. Further research is necessary to gain more knowledge about the role of the pellicle in the tooth remineralization process.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | | | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
2
|
Messana I, Manconi B, Cabras T, Boroumand M, Sanna MT, Iavarone F, Olianas A, Desiderio C, Rossetti DV, Vincenzoni F, Contini C, Guadalupi G, Fiorita A, Faa G, Castagnola M. The Post-Translational Modifications of Human Salivary Peptides and Proteins Evidenced by Top-Down Platforms. Int J Mol Sci 2023; 24:12776. [PMID: 37628956 PMCID: PMC10454625 DOI: 10.3390/ijms241612776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.
Collapse
Affiliation(s)
- Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | | | - Maria Teresa Sanna
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Antonella Fiorita
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa e del Collo, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gavino Faa
- Unit of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy;
| |
Collapse
|
3
|
de Jesus M, Guerreiro C, Brandão E, Mateus N, de Freitas V, Soares S. Study of Serial Exposures of an Astringent Green Tea Flavonoid Extract with Oral Cell-Based Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2070-2081. [PMID: 36652684 DOI: 10.1021/acs.jafc.2c01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is well known that repeated exposure to phenolic compounds (PCs) raises astringency perception. However, the link between this increase and the oral cavity's interactions with salivary proteins (SPs) and other oral constituents is unknown. To delve deeper into this connection, a flavonoid-rich green tea extract was tested in a series of exposures to two oral cell-based models using a tongue cell line (HSC3) and a buccal mucosa cell line (TR146). Serial exposures show cumulative PC binding to all oral models at all concentrations of the green tea extract; however, the contribution for the first and second exposures varies. The tongue mucosal pellicle (HSC3-Mu-SP) may contribute more to first-stage astringency (retaining 0.15 ± 0.01 mg mL-1 PCs at the first exposure), whereas the buccal mucosal pellicle (TR146-Mu-SP) retained significantly less (0.08 ± 0.02 mg mL-1). Additionally, increased salivary volume (SV+), which simulates the stimulation of salivary flow brought by a food stimulus, significantly enhances PC binding, particularly for TR146 cells: TR46-Mu-SP_SV+ bound significantly higher total PC concentration (0.17 ± 0.02 mg mL-1) than the model without increased salivary volume TR146-Mu-SP_SV- (0.09 ± 0.03 mg mL-1). This could be associated with a higher contribution of these oral cells for astringency perception during repeated exposures. Furthermore, PCs adsorbed in the first exposure to cell monolayer models (+TR146 and +HSC3) change the profile of PCs bound to these models in the second exposure. Regarding the structure binding activity, PCs with a total higher number of hydroxyl groups were more bound by the models containing SP. Regarding the SP, basic proline-rich proteins (bPRPs) may be involved in the increased perception of astringency upon repeated exposures. The extent of bPRP precipitation by PCs in mucosal pellicle models for both cell lines (HSC3 and TR146) in the second exposure (76 ± 13 and 83 ± 6%, respectively) was significantly higher than in the first one (25 ± 14 and 5 ± 6%, respectively).
Collapse
Affiliation(s)
- Mónica de Jesus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| | - Carlos Guerreiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| | - Elsa Brandão
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Rua do Campo Alegre, Porto 689, Portugal
| |
Collapse
|
4
|
Wang S, Gao Z, Liu L, Li M, Zuo A, Guo J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur J Pharm Sci 2022; 168:106085. [PMID: 34856348 DOI: 10.1016/j.ejps.2021.106085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
This paper describes the development of a film comprising chitosan (CS), sodium alginate (SA), and ethyl cellulose (EC) for buccal mucosal administration. A film of CS-SA unidirectional release drug-containing water-repellent layer EC was produced by interfacial reaction solvent-drying technique using self-made equipment. The CS-SA-EC film had superior mechanical properties compared to CS-EC and SA-EC films. The existence of the amide bond was confirmed by FT-IR. DSC confirmed that the drug was dispersed in the carrier material in an amorphous form. The drug release studies emerged that the model drugs from CS-SA-EC films presented better release properties. The Ritger-Peppas model best describes all ratios of drugs release mechanisms. The permeability characteristics of the films were evaluated in the TR146 cells model and the rabbit buccal mucosae. The cumulative penetration amounts of the model drugs were significantly increased. The permeability mechanism of the film was studied preliminarily using immunofluorescence and Western Blot. The results showed that the film inhibited the expression of ZO-1 protein, and the expressive trend of ZO-1 protein was consistent with the results of in vitro permeation experiments. The pharmacokinetics of the drugs loaded films were evaluated and compared with oral administration in rats. The relative bioavailability of the model drugs was 246.00% (Zolmitriptan) and 142.12% (Etodolac) relative to oral administration. The results of this study demonstrate the potential of CS-SA-EC vehicle in buccal mucosa drug delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Mingxin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian K&D Biotechnology Co., Ltd. Yanji, 133002, Jilin Province, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|