1
|
Feng J, Chen S, Chen H, Dai L, Qi X, Ahmad MZ, Gao K, Qiu S, Jin Y, Deng Y. Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H. arborescens. PLANT CELL REPORTS 2024; 43:248. [PMID: 39354144 DOI: 10.1007/s00299-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
KEY MESSAGE Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.
Collapse
Affiliation(s)
- Jing Feng
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuangshuang Chen
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huijie Chen
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Linjian Dai
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210008, China
| | - Xiangyu Qi
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Muhammad Zulfiqar Ahmad
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kai Gao
- Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Shuai Qiu
- Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Yuyan Jin
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanming Deng
- Jiangsu Provincial Key Laboratory for the Genetics and Improvement of Horticultural Crops, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Casimiro-Soriguer I, Aguilar-Benitez D, Gutierrez N, Torres AM. Transcriptome Analysis of Stigmas of Vicia faba L. Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1443. [PMID: 38891252 PMCID: PMC11175038 DOI: 10.3390/plants13111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo. 3092, 14080 Cordoba, Spain; (D.A.-B.); (N.G.); (A.M.T.)
| | | | | | | |
Collapse
|
3
|
Bullones A, Castro AJ, Lima-Cabello E, Fernandez-Pozo N, Bautista R, Alché JDD, Claros MG. Transcriptomic Insight into the Pollen Tube Growth of Olea europaea L. subsp. europaea Reveals Reprogramming and Pollen-Specific Genes Including New Transcription Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2894. [PMID: 37631106 PMCID: PMC10459472 DOI: 10.3390/plants12162894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The pollen tube is a key innovation of land plants that is essential for successful fertilisation. Its development and growth have been profusely studied in model organisms, but in spite of the economic impact of olive trees, little is known regarding the genome-wide events underlying pollen hydration and growth in this species. To fill this gap, triplicate mRNA samples at 0, 1, 3, and 6 h of in vitro germination of olive cultivar Picual pollen were analysed by RNA-seq. A bioinformatics R workflow called RSeqFlow was developed contemplating the best practices described in the literature, covering from expression data filtering to differential expression and clustering, to finally propose hub genes. The resulting olive pollen transcriptome consisted of 22,418 reliable transcripts, where 5364 were differentially expressed, out of which 173 have no orthologue in plants and up to 3 of them might be pollen-specific transcription factors. Functional enrichment revealed a deep transcriptional reprogramming in mature olive pollen that is also dependent on protein stability and turnover to allow pollen tube emergence, with many hub genes related to heat shock proteins and F-box-containing proteins. Reprogramming extends to the first 3 h of growth, including processes consistent with studies performed in other plant species, such as global down-regulation of biosynthetic processes, vesicle/organelle trafficking and cytoskeleton remodelling. In the last stages, growth should be maintained from persistent transcripts. Mature pollen is equipped with transcripts to successfully cope with adverse environments, even though the in vitro growth seems to induce several stress responses. Finally, pollen-specific transcription factors were proposed as probable drivers of pollen germination in olive trees, which also shows an overall increased number of pollen-specific gene isoforms relative to other plants.
Collapse
Affiliation(s)
- Amanda Bullones
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain;
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
- University Institute of Research on Olive Grove and Olive Oils (INUO), Universidad de Jaén, 23071 Jaen, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Malaga, Spain
| |
Collapse
|
4
|
Yang M, Huan W, Zhang G, Li J, Xia F, Durrani R, Zhao W, Lu J, Peng X, Gao F. Identification of Protein Quality Markers in Toad Venom from Bufo gargarizans. Molecules 2023; 28:molecules28083628. [PMID: 37110862 PMCID: PMC10141085 DOI: 10.3390/molecules28083628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Toad venom is a traditional Chinese medicine with high medicinal value. The existing quality evaluation standards of toad venom have obvious limitations because of the lack of research on proteins. Thus, it is necessary to screen suitable quality markers and establish appropriate quality evaluation methods for toad venom proteins to guarantee their safety and efficacy in clinical applications. SDS-PAGE, HPLC, and cytotoxicity assays were used to analyze differences in protein components of toad venom from different areas. Functional proteins were screened as potential quality markers by proteomic and bioinformatic analyses. The protein components and small molecular components of toad venom were not correlated in content. Additionally, the protein component had strong cytotoxicity. Proteomics analysis showed that 13 antimicrobial proteins, four anti-inflammatory and analgesic proteins, and 20 antitumor proteins were differentially expressed extracellular proteins. A candidate list of functional proteins was coded as potential quality markers. Moreover, Lysozyme C-1, which has antimicrobial activity, and Neuropeptide B (NPB), which has anti-inflammatory and analgesic activity, were identified as potential quality markers for toad venom proteins. Quality markers can be used as the basis of quality studies of toad venom proteins and help to construct and improve safe, scientific, and comprehensive quality evaluation methods.
Collapse
Affiliation(s)
- Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Province People's Hospital, Hangzhou 310014, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Rabia Durrani
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jidong Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|