1
|
Pałasz A, Kistowska J, Suszka-Świtek A, Krzystanek M, Błaszczyk I, Menezes IC, Filipczyk Ł, Bogus K. Olanzapine alters the expression of gasotransmitter-related enzymes: CBS and HO-2 in the rat hippocampus and striatum. Pharmacol Rep 2023; 75:1610-1618. [PMID: 37874531 PMCID: PMC10661766 DOI: 10.1007/s43440-023-00538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Gaseous neurotransmitters have been thought to be novel factors involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about the potential crosstalk between neuronal gasotransmitter signaling and neuroleptics action. The present work was, therefore, focused on gene expression of H2S and CO-producing enzymes in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at a dose of 5 mg/kg daily). All individuals were sacrificed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain and for quantitative analysis of cystathionine β-synthase (CBS) and heme oxygenase 2 (HO-2) protein distribution in selected brain structures. RESULTS Long-term treatment with olanzapine is reflected in different changes in the number of enzymes-expressing cells in the rat brain. Olanzapine decreased the number of CBS-expressing cells and possibly reduced H2S synthesis in the hippocampus and striatum. The antipsychotic administration increased the number of HO-2 immunopositive cells and probably stimulated the CO production in the hippocampus. CONCLUSIONS Modulatory effect of olanzapine on cellular mechanisms of gasotransmitter synthesis may be an alternative way of their pharmacological action.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland.
| | - Julia Kistowska
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Ul. Ziołowa 45/47, 40-635, Katowice, Poland
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour, Faculty of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| |
Collapse
|
2
|
Effects of antipsychotics on antioxidant defence system in patients with schizophrenia: A meta-analysis. Psychiatry Res 2022; 309:114429. [PMID: 35150976 DOI: 10.1016/j.psychres.2022.114429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/15/2021] [Accepted: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Theory of oxidative stress is suggested in the pathophysiology of schizophrenia. To determine the cause of impaired antioxidant defense system in schizophrenia, a meta-analysis was performed by selecting studies published from 1964 to 2021 from Pubmed and Scopus databases. Data were analysed using Comprehensive Meta-Analysis version 2 and calculated effect sizes were compared between unmedicated and medicated patients with schizophrenia and healthy controls. Heterogeneity, publication bias assessments and subgroup analyses of drug-free and drug-naïve patients, and patients treated with atypical and typical antipsychotics were conducted. Subgroup analysis of confounding factors including age, gender, illness duration and patient status was also conducted. We found that glutathione peroxidase (GPx) was significantly decreased in all patients. Significantly lower catalase (CAT), glutathione (GSH) and albumin (ALB) were found in unmedicated patients only. Both groups showed significantly weakened non-enzymatic antioxidant capacity. Subgroup analyses indicated that weakened non-enzymatic antioxidant capacity may be associated with schizophrenia. Antioxidant status was more impaired in drug-free patients compared with other subgroups. This indicated that antipsychotics may improve antioxidant defense system. Although effect sizes were smaller, future studies may focus on the effect of antipsychotic discontinuation. In overall, schizophrenia was associated with impaired antioxidant defense system especially the non-enzymatic antioxidant system.
Collapse
|
3
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
4
|
Haloperidol Reduces the Activity of Complement and Induces the Anti-Inflammatory Transformation of Peritoneal Macrophages in Rats. J Neuroimmune Pharmacol 2019; 14:369-374. [DOI: 10.1007/s11481-019-09860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
5
|
Sommer O, Aug RL, Schmidt AJ, Heiser P, Schulz E, Vedder H, Clement HW. Hydrogen Sulfide Affects Radical Formation in the Hippocampus of LPS Treated Rats and the Effect of Antipsychotics on Hydrogen Sulfide Forming Enzymes in Human Cell Lines. Front Psychiatry 2018; 9:501. [PMID: 30386265 PMCID: PMC6198150 DOI: 10.3389/fpsyt.2018.00501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives: Psychiatric disorders, such as schizophrenia and other neuroinflammatory diseases are accompanied by an increase in the oxidative stress and changes in the immune system and in the metabolic, hormonal and neurological components of the central nervous system (CNS). Hydrogen sulfide (H2S) is a gaseous molecule that is endogenously produced in the peripheral and central nervous system through cysteine by the following major H2S producing enzymes in the brain: cystathionine-γlyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). The physiological effects of H2S are broad, with antioxidative properties being a major role in the body. The aims of our investigation were to analyze the central nervous antioxidant, metabolic and neuronal effects in the hippocampus of the rat after inflammatory peripheral lipopolysaccharide (LPS) treatment; and to examine the effects of antipsychotics on the expression of these enzymes in human cell lines. Material and Methods: Male Lewis rats (250 g) received an i.p. LPS injection (1 mg/kg) 24 h before microdialysis experiments. Conscious rats were infused via these probes (1.5 μl/min) with a radical scavenger 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) in Krebs-Ringer solution. Sodiumhydrogensulfide (NaHS, 10 μg/min) was infused after a 2- h baseline for 1 h. Corticosterone, glutamate, glucose and lactate were measured by Elisa. Reactive oxygen species (ROS) were detected by electron spin resonance spectroscopy (ESR). The impact of the antipsychotics haloperidol, clozapine, olanzapine and risperidone on the expression of genes encoding the key enzymes of H2S synthesis was studied at the human neuroblastoma SH-SY5Y and monocytic U-937 cell lines. The cells were incubated for 24 h with 30 μM antipsychotic following which mRNA levels were measured by polymerase chain reaction. Results: Microdialysate glucose and lactate levels dramatically increased in the hippocampus of LPS untreated rats by local application of NaHS. By contrast, in the LPS pretreated rats, there was no effect of NaHS infusion on glucose but a further significant increase in microdialysate lactate was found. It was LPS pretreatment alone that particularly enhanced lactate levels. There was a marked increase in hippocampal microdialysate glutamate levels after local NaHS infusion in LPS untreated animals. In LPS treated rats, no change was observed by NaHS, but LPS itself had the strongest effect on microdialysate glutamate levels. Microdialysate corticosterone levels were reduced by NaHS in both LPS pretreated and untreated rats. The formation of free radicals in the hippocampus significantly reduced in LPS pretreated rats, while in LPS untreated rats a significant increase was observed after NaHS infusion. In human SH-SY5Y and U-937 cells, all three major enzymes of H2S-Synthesis, namely cystathionine-γ-lyase, cystathione ß-synthase and 3-mercaptopyruvate sulfurtransferase, could be detected by PCR. The antipsychotics haloperidol, clozapine, olanzapine and risperidone affected all three enzymes in different ways; with haloperidol and risperidone showing major effects that led to reductions in CBS or CSE expression. Discussion: The local application of NaHS in the hippocampus of the rat strongly affected glucose, lactate and glutamate release. Contrastingly, in LPS pretreated rats, a decreased radical formation was the only effect found. H2S synthetizing enzymes may be involved in antipsychotic mechanisms, although no clear common mechanism could be found.
Collapse
Affiliation(s)
- Olaf Sommer
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Rosana L. Aug
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas J. Schmidt
- Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Philip Heiser
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Eberhard Schulz
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Helmut Vedder
- Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Hans-Willi Clement
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Scaini G, Quevedo J, Velligan D, Roberts DL, Raventos H, Walss-Bass C. Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur Neuropsychopharmacol 2018; 28:369-380. [PMID: 29449054 DOI: 10.1016/j.euroneuro.2018.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/27/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is seen more frequently in persons with schizophrenia than in the general population, and these metabolic abnormalities are further aggravated by second generation antipsychotic (SGA) drugs. Although the underlying mechanisms responsible for the increased prevalence of MetS among patients under SGA treatment are not well understood, alterations in mitochondria function have been implicated. We performed a comprehensive evaluation of the role of mitochondrial dysfunction in the pathophysiology of drug-induced MetS in schizophrenia. We found a downregulation in genes encoding subunits of the electron transport chain complexes (ETC), enzyme activity, and mitochondrial dynamics in peripheral blood cells from patients at high-risk for MetS. Additionally, we evaluated several markers of energy metabolism in lymphoblastoid cell lines from patients with schizophrenia and controls following exposure to antipsychotics. We found that the high-risk drugs clozapine and olanzapine induced a general down-regulation of genes involved in the ETC, as well as decreased activities of the corresponding enzymes, ATP levels and a significant decrease in all the functional parameters of mitochondrial oxygen consumption in cells from patients and controls. We also observed that the medium-risk SGA quetiapine decreased oxygen consumption and respiratory control ratio in controls and patients. Additionally, clozapine and olanzapine induced a downregulation of Drp1 and Mfn2 both in terms of mRNA and protein levels. Together, these data suggest that an intrinsic defect in multiple components of oxidative metabolism may contribute to the increased prevalence of MetS in patients under treatment with SGAs known to cause risk for MetS.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Dawn Velligan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David L Roberts
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Henriette Raventos
- Centro de Investigacion en Biologia Celular y Molecular, University of Costa Rica, San Jose, Costa Rica
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
7
|
Miranda ASD, Moreira FA, Teixeira AL. The preclinical discovery and development of quetiapine for the treatment of mania and depression. Expert Opin Drug Discov 2017; 12:525-535. [PMID: 28271741 DOI: 10.1080/17460441.2017.1304378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Bipolar disorder is a chronic disabling condition characterized by alternating manic and depressive episodes. Bipolar disorder has been associated with functional impairment, poor quality of life, morbidity and mortality. Despite its significant clinical, social and economic burden, treatment options for bipolar disorder are still limited. Several clinical trials have shown efficacy of the atypical antipsychotic quetiapine (QTP) in the treatment of this condition. However, the mechanisms underlying the antidepressant and anti-manic effects of QTP remain poorly understood. Areas covered: The article provides the emerging evidence from pre-clinical studies regarding the antidepressant and anti-manic mechanisms of action of QTP. In combination with its primary active metabolite norquetiapine, QTP modulates several neurotransmitter systems, including serotonin, dopamine, noradrenaline and histamine. QTP also seems to influence mediators of the immune system. Expert opinion: Pre-clinical studies have provided valuable information on the potential antidepressant mechanisms of action of QTP, but pre-clinical studies on QTP's anti-manic effects are still scarce. A major problem refers to the lack of valid experimental models for bipolar disorder. Additionally, immune and genetic based studies are largely descriptive. The role of the QTP metabolite norquetiapine in modulating non-neurotransmitter systems also needs to be further addressed.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Fabrício A Moreira
- c Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Antônio Lúcio Teixeira
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, McGovern Medical School , University of Texas Health Science Center at Houston , Houston , TX , USA
| |
Collapse
|
8
|
Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture. Acta Neuropsychiatr 2016; 28:38-44. [PMID: 26286703 DOI: 10.1017/neu.2015.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND It has been reported that lithium may inhibit lipid peroxidation and protein oxidation. Lithium salts also appear to stimulate cell proliferation, increase neurogenesis, and delay cell death. Oxidative stress and neurodegeneration may play an important role in the pathophysiology of bipolar disorder and the disease course thereof. The aim of this research is to estimate the influence of lithium (alone and in combination with haloperidol) on the parameters of oxidative stress and viability of SH-SY5Y cell lines in neutral and pro-oxidative conditions. METHODS The evaluated oxidative stress parameter was lipid peroxidation. The viability of the cell lines was measured utilising the MTT test. RESULTS In neutral conditions, higher levels of thiobarbituric acid reactive substances were observed in those samples which contained both haloperidol and lithium than in other samples. However, these differences were not statistically significant. Cell viability was significantly higher in therapeutic lithium samples than in the controls; samples of haloperidol alone as well as those of haloperidol with lithium did not differ from controls. CONCLUSIONS The results of our study may indicate that lithium possess neuroprotective properties that may be partly due to antioxidative effects. The combination of lithium and haloperidol may generate increased oxidative stress.
Collapse
|
9
|
Nikolić-Kokić A, Mijušković A, Tatalović N, Nestorov J, Miler M, Oreščanin-Dušić Z, Nikolić M, Milošević V, Blagojević D, Spasić M, Miljević Č. Effects of antipsychotic drug administration on antioxidative defense enzymes in male rat kidney. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:905-911. [PMID: 27644343 DOI: 10.1080/15287394.2016.1201706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
The use of atypical antipsychotic drugs (APD) was reported to be associated with adverse effects on the kidneys. Thus, the aim of this study was to examine whether APD exerted their adverse effects by interfering with the renal antioxidant defense system. Male 3-mo-old Wistar rats were treated for 28 d with ziprasidone (ZIP), clozapine (CLO), or sertindole (SER) using a daily dose recommended for antipsychotic drug therapy. The expression and activities of antioxidant enzymes superoxide dismutase (SOD) type 1 and type 2, catalase (CAT), glutathione reductase (GR), and glutathione S-transferases (GSTs) activity were measured in the kidneys. Changes in the kidneys were also evaluated histologically. Ziprasidone, CLO, and SER reduced renal SOD type 1 and type 2 activities. Decreased CAT activity was observed only in SER-treated rats. An inhibition in GR activity and increased activity of GST was found only after treatment with CLO. Histological analysis showed dilatation of proximal tubules in kidneys with all three drugs. In conclusion, data indicate that redox disturbances may contribute to renal morphologic alterations in proximal tubules in rats treated with all APD.
Collapse
Affiliation(s)
- Aleksandra Nikolić-Kokić
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Ana Mijušković
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Nikola Tatalović
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Jelena Nestorov
- b Department of Biochemistry , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Marko Miler
- c Department of Cytology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Zorana Oreščanin-Dušić
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Milan Nikolić
- d Department of Biochemistry, Faculty of Chemistry , University of Belgrade , Belgrade , Serbia
| | - Verica Milošević
- c Department of Cytology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Duško Blagojević
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Mihajlo Spasić
- a Department of Physiology , Institute for Biological Research "Siniša Stanković," University of Belgrade , Belgrade , Serbia
| | - Čedo Miljević
- e Institute of Mental Health, School of Medicine , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
10
|
Sugawara H, Bundo M, Asai T, Sunaga F, Ueda J, Ishigooka J, Kasai K, Kato T, Iwamoto K. Effects of quetiapine on DNA methylation in neuroblastoma cells. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:117-21. [PMID: 25194461 DOI: 10.1016/j.pnpbp.2014.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 02/05/2023]
Abstract
Epigenetic regulation may be involved in the pathophysiology of mental disorders, such as schizophrenia and bipolar disorder, and in the pharmacological action of drugs. Characterizing the epigenetic effects of drugs is an important step to optimal treatment. We performed comprehensive and gene-specific DNA methylation analyses of quetiapine using human neuroblastoma cells. Human neuroblastoma cells were cultured with quetiapine for 8 days, and DNA methylation analysis was performed using Infinium HumanMethylation27 BeadChip. A total of 1173 genes showed altered DNA methylation. Altered DNA methylation predominantly occurred as hypomethylation within the CpG island compared to DNA isolated from non-treated cells. Gene ontology analysis revealed that these genes were related to the cellular process of intracellular protein binding. There was no common effect of quetiapine with three mood stabilizers (lithium, valproate, and carbamazepine). However, common DNA methylation changes in eight genes, including ADRA1A, which encodes adrenoceptor alpha 1A, were found with quetiapine and lithium treatments. Finally, bisulfite-sequencing analysis revealed that quetiapine decreased the DNA methylation level of the promoter region of SLC6A4, where hypermethylation with bipolar disorder and hypomethylation with mood stabilizers have been reported.
Collapse
Affiliation(s)
- Hiroko Sugawara
- Department of Psychiatry, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miki Bundo
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsuro Asai
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Fumiko Sunaga
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Junko Ueda
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuya Iwamoto
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
11
|
Yang MC, Chen KP, Lung FW. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol 2014; 740:697-702. [DOI: 10.1016/j.ejphar.2014.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/28/2014] [Accepted: 06/06/2014] [Indexed: 12/01/2022]
|
12
|
Foley DL, Mackinnon A. A systematic review of antipsychotic drug effects on human gene expression related to risk factors for cardiovascular disease. THE PHARMACOGENOMICS JOURNAL 2014; 14:446-51. [DOI: 10.1038/tpj.2014.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
|
13
|
Antipsychotic induced alteration of growth and proteome of rat neural stem cells. Neurochem Res 2012; 37:1649-59. [PMID: 22528831 DOI: 10.1007/s11064-012-0768-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/19/2012] [Accepted: 03/27/2012] [Indexed: 01/19/2023]
Abstract
Neural stem cells (NSCs) play a crucial role in the development and maturation of the central nervous system and therefore have the potential to target by therapeutic agents for a wide variety of diseases including neurodegenerative and neuropsychiatric illnesses. It has been suggested that antipsychotic drugs have significant effects on NSC activities. However, the molecular mechanisms underlying antipsychotic-induced changes of NSC activities, particularly growth and protein expression, are largely unknown. NSCs were treated with either haloperidol (HD; 3 μM), risperidone (RS; 3 μM) or vehicle (DMSO) for 96 h. Protein expression profiles were studied through a proteomics approach. RS promoted and HD inhibited the growth of NSCs. Proteomics analysis revealed that 15 protein spots identified as 12 unique proteins in HD-, and 20 protein spots identified as 14 proteins in RS-treated groups, were differentially expressed relative to control. When these identified proteins were compared between the two drug-treated groups, 2 proteins overlapped leaving 10 HD-specific and 12 RS-specific proteins. Further comparison of the overlapped altered proteins of 96 h treatment with the neuroleptics-induced overlapped proteins at 24 h time interval (Kashem et al. [40] in Neurochem Int 55:558-565, 2009) suggested that overlapping altered proteins expression at 24 h was decreased (17 proteins i.e. 53 % of total expressed proteins) with the increase of time (96 h) (2 proteins; 8 % of total expressed proteins). This result indicated that at early stage both drugs showed common mode of action but the action was opposite to each other while administration was prolonged. The opposite morphological pattern of cellular growth at 96 h has been associated with dominant expression of oxidative stress and apoptosis cascades in HD, and activation of growth regulating metabolic pathways in RS treated cells. These results may explain RS induced repairing of neural damage caused by a wide variety of neural diseases including schizophrenia.
Collapse
|
14
|
Hitoshi K, Katoh M, Suzuki T, Ando Y, Nadai M. Changes in Expression of Drug-Metabolizing Enzymes by Single-Walled Carbon Nanotubes in Human Respiratory Tract Cells. Drug Metab Dispos 2011; 40:579-87. [DOI: 10.1124/dmd.111.043455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
15
|
Yang MC, Lung FW. Neuroprotection of paliperidone on SH-SY5Y cells against β-amyloid peptide(25-35), N-methyl-4-phenylpyridinium ion, and hydrogen peroxide-induced cell death. Psychopharmacology (Berl) 2011; 217:397-410. [PMID: 21523348 DOI: 10.1007/s00213-011-2291-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/28/2011] [Indexed: 11/27/2022]
Abstract
RATIONALE Antipsychotic drugs (APDs) were widely used in treating schizophrenia. Some APDs were reported to have neuroprotective effects against neurotoxicants in the cell level. OBJECTIVES Thus, one typical APD (haloperidol) and three atypical APDs (paliperidone, olanzapine, and risperidone) were tested whether they provide neuroprotection against stressor-induced cell death of SH-SY5Y. METHODS Hydrogen peroxide, N-methyl-4-phenylpyridinium ion, and β-amyloid peptide were used to treat cells with or without preconditioning by APDs; cell survival and indicators of oxidative stress were measured, respectively. RESULTS Paliperidone has the lowest baseline cytotoxicity compared with other APDs at 24 h; in addition, the paliperidone group showed a better survival than the other APD groups (P < 0.05). In stressor challenging, with a fixed concentration of stressors, olanzapine provided the best neuroprotection at 100 μM against Aβ(25-35) and MPP(+) (P < 0.05). In contrast, paliperidone works finely at low concentrations (10 and 50 μM) against Aβ(25-35) and MPP(+) and solely protected SH-SY5Y from hydrogen peroxide. At 100 μM, paliperidone completely diminished cell reduction induced by different stressors, regardless of their dosages. Paliperidone was demonstrated with a higher oxidative stress-scavenging properties than other APDs in several aspects, such as generated bulk glutathione, low HNE, and protein carbonyl productions. Contradictorily, olanzapine, at 24 h, also enhanced HNE and protein carbonyl productions, which may underlie its induced cytotoxicity. CONCLUSIONS Different APDs exhibit variations against different stressors. Paliperidone might be useful not only in alleviating oxidative stress induced by Aβ(25-35) and MPP(+) but also in providing neuroprotection against hydrogen peroxide.
Collapse
|
16
|
Mas S, Gassó P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 2011; 26:712-21. [PMID: 21923690 DOI: 10.1111/j.1472-8206.2011.00988.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse reactions to antipsychotic drugs (APs) have been attributed to oxidative stress. Sulforaphane (SF) is a potent antioxidant that protects against dopaminergic cell death. We examined the protective properties of SF against AP-induced oxidative stress in dopaminergic neuroblastoma cells. Human neuroblastoma SK-N-SH cells were treated with SF (0.5-5 μM), and 24 h later, haloperidol, risperidone or paliperidone (100 μM) was administered, either alone or in combination with dopamine (100 μM). To determine the antioxidant properties of SF, quinone oxidoreductase (NQO1) activity, glutathione S-transferase activity, and glutathione (GSH) levels were determined. Oxidative stress was measured by the increase in thiobarbituric acid reactive substances (TBARS) and in protein-bound quinones. Cell viability was also assessed. SF treatment increased GSH levels and induced NQO1 activity in SK-N-SH cells. Haloperidol was the only AP that increased TBARS when administered alone. When cells were cocultured with a drug in combination with dopamine, all three APs increased TBARS and protein-bound quinones and also induced neurotoxicity. In all the experimental conditions, 5 μM SF attenuated the accumulation of TBARS and protein-bound quinones and increased cell survival rates. Our results indicate that SF increases GSH levels and induces NQO1 activity and the removal of electrophilic quinones and radical oxygen species. Furthermore, SF could provide protective effects against AP-induced toxicity in dopaminergic cells.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Belzeaux R, Formisano-Tréziny C, Loundou A, Boyer L, Gabert J, Samuelian JC, Féron F, Naudin J, Ibrahim EC. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. J Psychiatr Res 2010; 44:1205-13. [PMID: 20471034 DOI: 10.1016/j.jpsychires.2010.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 12/12/2022]
Abstract
The aim of the study is to compare the expression level of candidate genes between patients suffering from a severe major depressive episode (MDE) and controls, and also among patients during MDE evolution. After a comprehensive review of the biological data related to mood disorders, we initiated a hypothesis-driven exploration of candidate mRNAs. Using RT-qPCR, we analyzed peripheral blood mononuclear cells (PBMCs) mRNA obtained from a homogeneous population of 11 patients who suffered from severe melancholic MDE. To assess the evolution of MDE, we analyzed PBMC mRNAs that were collected on Day 1 and 8 weeks later. Data from these patient samples were analyzed in comparison to age- and sex-matched healthy controls. Among 40 candidate genes consistently transcribed in PBMCs, 10 were differentially expressed in at least one comparison. We found that variations of mRNA levels for NRG1, SORT1 and TPH1 were interesting state-dependent biological markers of the disease. We also observed that variations in other mRNA expression were associated with treatment efficacy or clinical improvement (CREB1, HDAC5, HSPA2, HTR1B, HTR2A, and SLC6A4/5HTT). Significantly, 5HTT exhibited a strong correlation with clinical score evolution. We also found a state-independent marker, IL10. Moreover, the analysis of 2 separate MDEs concerning a same patient revealed comparable results for the expression of CREB1, HSPA2, HTR1B, NRG1 and TPH1. Overall, our results indicate that PBMCs obtained at different time points during MDE progression represent a promising avenue to discover biological markers for depression.
Collapse
Affiliation(s)
- Raoul Belzeaux
- NICN-CNRS UMR 6184, Faculté de Médecine Nord-IFR Jean Roche, 51 Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chow TJ, Loh HC, Tee SF, Tang PY. Evaluation of carotenoid level in schizophrenic patients using non-invasive measurement. Asian J Psychiatr 2010; 3:190-3. [PMID: 23050886 DOI: 10.1016/j.ajp.2010.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 09/01/2010] [Accepted: 09/08/2010] [Indexed: 01/27/2023]
Abstract
Free radicals are produced as part of the body immune response triggered by exogenous oxidants. In excess, they impair antioxidant defence system and cause oxidative stress. Antioxidants are hypothesised as antidotes to counteract oxidative stress and improve immune function. Carotenoids serve as a reliable indicator of overall antioxidant level in humans. This study investigated the possible relationship of carotenoid antioxidant levels in schizophrenia. A total of 351 schizophrenic subjects from Hospital Bahagia Ulu Kinta, Malaysia and 247 healthy controls were recruited. Subjects' skin carotenoid levels were measured using a non-invasive technique, Raman spectroscopy. The results showed significant (P<0.01) reduction of carotenoid level in patient compared to healthy controls, suggesting higher levels of oxidative stress in schizophrenia. Comparison between gender, age, subtypes, antipsychotic drug treatments, and duration of illness was investigated, but none was significantly associated with carotenoid score. Antipsychotics were suggested to be the possible causes of reduced antioxidant level in schizophrenia.
Collapse
Affiliation(s)
- Tze Jen Chow
- Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|