1
|
Deriha K, Hashimoto E, Ukai W, Marchisella F, Nishimura E, Hashiguchi H, Tayama M, Ishii T, Riva MA, Kawanishi C. Reduced sociability in a prenatal immune activation model: Modulation by a chronic blonanserin treatment through the amygdala-hippocampal axis. J Psychiatr Res 2023; 164:209-220. [PMID: 37379611 DOI: 10.1016/j.jpsychires.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The environmental disturbances in a critical neurodevelopmental period exert organizational effects on brain intrinsic plasticity including excitatory and inhibitory (E/I) neurotransmission those can cause the onset of psychiatric illness. We previously reported that treatment of neural precursor cells with N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 induced reduction of GABAergic interneuron differentiation, and these changes recovered by atypical antipsychotic blonanserin treatment in vitro. However, it remains unclear how this treatment affects neural circuit changes in hippocampus and amygdala, which might contribute to the prevention of onset process of schizophrenia. To elucidate the pathogenic/preventive mechanisms underlying prenatal environmental adversity-induced schizophrenia in more detail, we administered poly (I:C) followed by antipsychotics and examined alterations in social/cognitive behaviors, GABA/glutamate-related gene expressions with cell density and E/I ratio, and brain-derived neurotrophic factor (Bdnf) transcript levels, particularly in limbic areas. Treatment with antipsychotic blonanserin ameliorated impaired social/cognitive behaviors and increased parvalbumin (PV)-positive (+) cell density and its mRNA levels as well as Bdnf with long 3'UTR mRNA levels, particularly in the dorsal hippocampus, in rats exposed to maternal immune activation (MIA). Low dose of blonanserin and haloperidol altered GABA and glutamate-related mRNA levels, the E/I ratio, and Bdnf long 3'UTR mRNA levels in the ventral hippocampus and amygdala, but did not attenuate behavioral impairments. These results strongly implicate changes in PV expression, PV(+) GABAergic interneuron density, and Bdnf long 3'UTR expression levels, particularly in the dorsal hippocampus, in the pathophysiology and treatment responses of MIA-induced schizophrenia and highlight the therapeutic potential of blonanserin for developmental stress-related schizophrenia.
Collapse
Affiliation(s)
- Kenta Deriha
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Wataru Ukai
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Institutional Research, Center for Medical Education, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy.
| | - Emi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Hanako Hashiguchi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Masaya Tayama
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Takao Ishii
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Occupational Therapy, Graduate School of Health Sciences, Sapporo Medical University, S-1, W-17, Chuo-ku, Sapporo, 0608556, Japan
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| |
Collapse
|
2
|
Ma H, Cheng N, Zhang C. Schizophrenia and Alarmins. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060694. [PMID: 35743957 PMCID: PMC9230958 DOI: 10.3390/medicina58060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia, consisting of a group of severe psychiatric disorders with a complex etiology, is a leading cause of disability globally. Due to the lack of objective indicators, accurate diagnosis and selection of effective treatments for schizophrenia remain challenging. The association between schizophrenia and alarmins levels has been proposed for many years, but without solid evidence. Alarmins are prestored molecules that do not require processing and can be released upon cell death or damage, making them an ideal candidate for an early initiator of inflammation. Immunological biomarkers seem to be related to disease progression and treatment effectiveness. Several studies suggest strong associations among the high-mobility group box 1 protein (HMGB1), interleukin-1α, interleukin-33, S100B, heat-shock proteins, and uric acid with schizophrenic disorders. The purpose of this review is to discuss the evidence of central and peripheral immune findings in schizophrenia, their potential causes, and the effects of immunomodulatory therapies on symptoms and outline potential applications of these markers in managing the illness. Although there are currently no effective markers for diagnosing or predicting treatment effects in patients with schizophrenia, we believe that screening immune-inflammatory biomarkers that are closely related to the pathological mechanism of schizophrenia can be used for early clinical identification, diagnosis, and treatment of schizophrenia, which may lead to more effective treatment options for people with schizophrenia.
Collapse
Affiliation(s)
- Huan Ma
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Ning Cheng
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Caiyi Zhang
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou 221000, China
- Correspondence: ; Tel.: +86-137-7588-9105
| |
Collapse
|
3
|
Yi Y, Song Y, Lu Y. Parvalbumin Interneuron Activation-Dependent Adult Hippocampal Neurogenesis Is Required for Treadmill Running to Reverse Schizophrenia-Like Phenotypes. Front Cell Dev Biol 2020; 8:24. [PMID: 32117963 PMCID: PMC7010605 DOI: 10.3389/fcell.2020.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Physical exercise can alleviate some of the schizophrenia symptoms in patients, the mechanisms, however, are still unclear. To investigate whether the GABAergic interneuron involved in the therapeutic effect of treadmill running on schizophrenia, the parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus (DG) was specifically activated or abolished and the effects were evaluated. In the MK801-induced schizophrenia-like animal model, we found:(1) Treadmill running rescued the schizophrenia-related behavioral phenotypes, promoted the adult hippocampal neurogenesis, and increased the dendrite number and complexity of newborn neurons. (2) Treadmill running increased the number of PV-positive interneurons in the DG; genetic ablation of these interneurons reduced adult neurogenesis and abolished the effect of treadmill running on the schizophrenia-related behaviors. Consistently, chemogenetic activation of these interneurons improved neurogenesis and alleviated the schizophrenia-related behaviors. These results suggest a pivotal role of PV-positive interneuron-mediated adult neurogenesis in exercise. (3) However, schizophrenia-related behavioral phenotypes and adult neurogenesis in the DG could still be reversed by exercise after specifically knocking out the schizophrenia-related gene ErbB4 in PV interneurons, as a means to reduce their GABA release. These results suggest that activation of PV interneurons in the DG is sufficient for treadmill running to reverse schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Yandong Yi
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlong Song
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|