1
|
Shi MH, Yan Y, Niu X, Wang JF, Li S. GPR39-mediated ERK1/2 signaling reduces permethrin-induced proliferation of estrogen receptor α-negative cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116303. [PMID: 38599157 DOI: 10.1016/j.ecoenv.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Certain insecticides are known to have estrogenic effects by activating estrogen receptors through genomic transcription. This has led researchers to associate specific insecticide use with an increased breast cancer risk. However, it is unclear if estrogen receptor-dependent pathways are the only way in which these compounds induce carcinogenic effects. The objective of this study was to determine the impact of the pyrethroid insecticide permethrin on the growth of estrogen receptor negative breast cancer cells MDA-MB-231. Using tandem mass spectrometric techniques, the effect of permethrin on cellular protein expression was investigated, and gene ontology and pathway function enrichment analyses were performed on the deregulated proteins. Finally, molecular docking simulations of permethrin with the candidate target protein was performed and the functionality of the protein was confirmed through gene knockdown experiments. Our findings demonstrate that exposure to 10-40 μM permethrin for 48 h enhanced cell proliferation and cell cycle progression in MDA-MB-231. We observed deregulated expression in 83 upregulated proteins and 34 downregulated proteins due to permethrin exposure. These deregulated proteins are primarily linked to transmembrane signaling and chemical carcinogenesis. Molecular docking simulations revealed that the overexpressed transmembrane signaling protein, G protein-coupled receptor 39 (GPR39), has the potential to bind to permethrin. Knockdown of GPR39 partially impeded permethrin-induced cellular proliferation and altered the expression of proliferation marker protein PCNA and cell cycle-associated protein cyclin D1 via the ERK1/2 signaling pathway. These findings offer novel evidence for permethrin as an environmental breast cancer risk factor, displaying its potential to impact breast cancer cell proliferation via an estrogen receptor-independent pathway.
Collapse
Affiliation(s)
- Ming-Hui Shi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Yi Yan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Xi Niu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Jia-Fu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Sheng Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China.
| |
Collapse
|
2
|
Mathiron AGE, Gallego G, Silvestre F. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106543. [PMID: 37105866 DOI: 10.1016/j.aquatox.2023.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
In fishes, the impacts of environmental constraints undergone during development on the behavioural response of individuals are not well understood. Obtaining more information is important since the aquatic environment is widely exposed to pollution involving neurotoxic compounds likely to cause phenotypic changes that can affect animal fitness. We explored how early exposure to the pyrethroid insecticide permethrin (PM), a compound known for its neurotoxicity, influences the phenotypic traits in both larvae and adults of the self-fertilizing fish mangrove rivulus, Kryptolebias marmoratus. First, we investigated immediate effects of PM on larvae after one-week exposure (0-7 days post-hatching): larvae exposed to high concentration (200 µg.L-1) grew less, were less active, had negative thigmotaxis and were less likely to capture prey than control individuals and those exposed to low concentration (5 µg.L-1). No difference was found between treatments when considering oxygen consumption rate and cortisol levels. Persistent effects of early exposure to PM on adults (147-149 days post-hatching) showed that fish previously exposed to high concentration of PM overcompensated growth, leading them to finally be longer and heavier than fish from other treatments. Moreover, we evidenced that levels of cortisol interacted with early PM exposure to affect behaviours during dyadic contests. Fish were more likely to initiate fighting behaviours and were more likely to be aggressive when they have low pre-contest levels of cortisol, but these effects were less pronounced when individuals were exposed to PM. This study shows that PM can have both immediate and persistent effects on phenotypic traits in a self-fertilizing vertebrate and suggests that a pyrethroid can interact with hormones action to affect animal behaviour.
Collapse
Affiliation(s)
- Anthony G E Mathiron
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; Institute of Life, Earth, and Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Gil Gallego
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; Institute of Life, Earth, and Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
3
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Comparative behavioral ecotoxicology of Inland Silverside larvae exposed to pyrethroids across a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159398. [PMID: 36257430 DOI: 10.1016/j.scitotenv.2022.159398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.
Collapse
Affiliation(s)
- Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Emily I Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Christopher Y Markgraf
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Amelie Segarra
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA 95819, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| |
Collapse
|
4
|
Ji J, Huang J, Cao N, Hao X, Wu Y, Ma Y, An D, Pang S, Li X. Multiview behavior and neurotransmitter analysis of zebrafish dyskinesia induced by 6PPD and its metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156013. [PMID: 35588826 DOI: 10.1016/j.scitotenv.2022.156013] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The typical tire manufacturing additive 6PPD, its metabolites 6PPDQ and 4-Hydroxy should be monitored because of their ubiquitous presence in the environment and the high toxicity of 6PPDQ to coho salmon. The toxic effect of 6PPD and its metabolites have been revealed superficially, especially on behavioral characteristics. However, the behavioral indicators explored so far are relatively simple and the toxic causes are poorly understood. With this in mind, our work investigated the toxic effects of 6PPD, 6PPDQ and 4-Hydroxy on adult zebrafish penetratingly through machine vision, and the meandering, body angle, top time and 3D trajectory are used for the first time to show the abnormal behaviors induced by 6PPD and its metabolites. Moreover, neurotransmitter changes in the zebrafish brain were measured to explore the causes of abnormal behavior. The results showed that high-dose treatment of 6PPD reduced the velocity by 42.4% and decreased the time at the top of the tank by 91.0%, suggesting significant activity inhibition and anxiety. In addition, γ-aminobutyric acid and acetylcholine were significantly impacted by 6PPD, while dopamine exhibited a slight variation, which can explain the bradykinesia, unbalance and anxiety of zebrafish and presented similar symptoms as Huntingdon's disease. Our study explored new abnormal behaviors of zebrafish induced by 6PPD and its metabolites in detail, and the toxic causes were revealed for the first time by studying the changes of neurotransmitters, thus providing an important reference for further studies of the biological toxicity of 6PPD and its metabolites.
Collapse
Affiliation(s)
- Jiawen Ji
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jinze Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Niannian Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xianghong Hao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanhua Wu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Ma
- College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Dong An
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Ferreira SA, Loreto JS, Dos Santos MM, Barbosa NV. Environmentally relevant manganese concentrations evoke anxiety phenotypes in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103870. [PMID: 35523392 DOI: 10.1016/j.etap.2022.103870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is an essential metal for living organisms. However, the excess of Mn can be toxic, especially for the central nervous system. Herein, we used adult zebrafish as model organism to investigate the relationship of an environmentally relevant Mn exposure with the onset of neurobehavioral disturbances and brain biochemical alterations. Fish were exposed to MnCl2 at 0.5, 2.0, 7.5 and 15.0 mg/L for 96 h, and after submitted to trials for examining exploratory, locomotor and anxiety-related behaviors. The neurobehavioral parameters were followed by the analyses of cell viability, Mn accumulation and acetylcholinesterase activity in the brain, and whole-body cortisol levels. By Novel tank, Light dark and Social preference test, we found that the exposure to Mn, along with locomotor deficits induced anxiety-like phenotypes in zebrafish. Most of these behavioral changes were evoked by the highest concentrations, which also caused cell viability loss, higher accumulation of Mn and increased AChE activity in the brain, and an increase in the whole-body cortisol content. Our findings demonstrated that zebrafish are quite sensitive to levels of Mn found in the environment, and that the magnitude of the neurotoxic effects may be associated with the levels of manganese accumulated in the brain. Interestingly, we showed that Mn exposure in addition to motor deficits may also cause psychiatric abnormalities, namely anxiety.
Collapse
Affiliation(s)
- Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
6
|
Blanc M, Antczak P, Cousin X, Grunau C, Scherbak N, Rüegg J, Keiter SH. The insecticide permethrin induces transgenerational behavioral changes linked to transcriptomic and epigenetic alterations in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146404. [PMID: 33752003 DOI: 10.1016/j.scitotenv.2021.146404] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The pyrethroid insecticide permethrin is widely used for agricultural and domestic purposes. Previous data indicated that it acts as a developmental neurotoxicant and can induce transgenerational effects in non-target organisms. However, associated underlying mechanisms remain unclear. The aim of this study was to investigate permethrin-related transgenerational effects in the zebrafish model, and to identify possible molecular mechanisms underlying inheritance. Zebrafish (F0) were exposed to permethrin during early-life (2 h post-fertilization up to 28 days). The F1 and F2 offspring generations were obtained by pairing exposed F0 males and females, and were bred unexposed. Locomotor and anxiety behavior were investigated, together with transcriptomic and epigenomic (DNA methylation) changes in brains. Permethrin exposed F0 fish were hypoactive at adulthood, while males from the F1 and F2 generations showed a specific decrease in anxiety-like behavior. In F0, transcriptomic data showed enrichment in pathways related to glutamatergic synapse activity, which may partly underlie the behavioral effects. In F1 and F2 males, dysregulation of similar pathways was observed, including a subset of differentially methylated regions that were inherited from the F0 to the F2 generation and indicated stable dysregulation of glutamatergic signaling. Altogether, the present results provide novel evidence on the transgenerational neurotoxic effects of permethrin, as well as mechanistic insight: a transient exposure induces persistent transcriptional and DNA methylation changes that may translate into transgenerational alteration of glutamatergic signaling and, thus, into behavioral alterations.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France.
| | - Philipp Antczak
- Centre for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Xavier Cousin
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Christoph Grunau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Nikolai Scherbak
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
7
|
Mundy PC, Huff Hartz KE, Fulton CA, Lydy MJ, Brander SM, Hung TC, Fangue NA, Connon RE. Exposure to permethrin or chlorpyrifos causes differential dose- and time-dependent behavioral effects at early larval stages of an endangered teleost species. ENDANGER SPECIES RES 2021; 44:89-103. [PMID: 34354772 PMCID: PMC8336651 DOI: 10.3354/esr01091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pyrethroid and organophosphate pesticides are two of the most commonly used classes of insecticide worldwide. At sublethal concentrations, permethrin (a pyrethroid) and chlorpyrifos (an organophosphate) impact behavior in model fish species. We investigated behavioral effects of environmentally relevant concentrations of permethrin or chlorpyrifos on early larval delta smelt Hypomesus transpacificus, a Critically Endangered teleost species endemic to the San Francisco Bay Delta, California, USA. Using a photomotor behavioral assay of oscillating light and dark periods, we measured distance moved, turn angle, meander, angular velocity, rotations, thigmotaxis (time spent in the border versus center), and swim speed duration and frequency. The lowest concentrations of permethrin used in the tests (0.05 and 0.5 μg l−1) caused significant increases in distance moved at 72 and 96 h, respectively. At 48, 72, and 96 h of exposure, 5 μg l−1 of permethrin caused a hyperactive state in which the larvae significantly decreased thigmotaxis, quickly turning in short bouts of activity, characterized by significant increases in rotations and freezing events. Larvae exposed to 0.05 μg l−1 chlorpyrifos significantly increased thigmotaxis at 72 and 96 h. In response to 5 μg l−1 chlorpyrifos, larvae significantly increased velocity at 72 h exposure, and significantly increased freezing events at 96 h. Behavioral data on larval delta smelt exposed to contaminants present in their limited habitat have the potential to aid evaluations of the suitability of spawning and rearing habitats for this endangered species, thus improving conservation management strategies focused on this sensitive life stage.
Collapse
Affiliation(s)
- Paige C Mundy
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
9
|
Liu S, Yu M, Xie X, Ru Y, Ru S. Carbofuran induces increased anxiety-like behaviors in female zebrafish (Danio rerio) through disturbing dopaminergic/norepinephrinergic system. CHEMOSPHERE 2020; 253:126635. [PMID: 32278909 DOI: 10.1016/j.chemosphere.2020.126635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Carbofuran, a carbamate pesticide, is widely used in developing countries to manage insect pests. Studies have found that carbofuran posed potential risks for the neurotransmitter systems of non-target species, we speculated that these disruptive effects on the neurotransmitter systems could trigger anxiety-like behaviors. In this study, female zebrafish were exposed to environmental levels (5, 50, and 500 μg/L) of carbofuran for 48 h to evaluate the effects of carbofuran on anxiety-like behaviors. Results showed that zebrafish exhibited more anxiety-like behaviors which proved by the observed higher bottom trend and more erratic movements in the novel tank after carbofuran treatment. In order to elucidate the underlying molecular mechanisms of carbofuran-induced anxiety-promoting effects, we measured the levels of neurotransmitters, precursors, and major metabolites, along with the level of gene expression and the enzyme activities involved in neurotransmitter synthesis and metabolism. The results demonstrated that acute carbofuran exposure stimulated the mRNA expression and enzyme activity of tyrosine hydroxylase, which sequentially induced the increased levels of dopamine and norepinephrine. Tyrosine hydroxylase inhibitor relieved the anxiety-related changes induced by carbofuran, confirming the overactive tyrosine hydroxylase-mediated accumulation of dopamine and norepinephrine in the brain was one of the main reasons for carbofuran-induced anxiety-like behaviors in the female zebrafish. Overall, our study indicated the environmental health risks of carbamate pesticide in inducing neurobehavioral disorders and provided novel insights into the investigation of the relevant underlying mechanisms.
Collapse
Affiliation(s)
- Shuang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Miao Yu
- College of Life Science, Langfang Normal University, Langfang, 065000, China.
| | - Xincen Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yiran Ru
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, 92093, USA
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|