1
|
Hoang-Dang B, Halavi SE, Rotstein NM, Spivak NM, Dang NH, Cvijanovic L, Hiller SH, Vallejo-Martelo M, Rosenberg BM, Swenson A, Becerra S, Sun M, Revett ME, Kronemyer D, Berlow R, Craske MG, Suthana N, Monti MM, Zbozinek TD, Bookheimer SY, Kuhn TP. Transcranial Focused Ultrasound Targeting the Amygdala May Increase Psychophysiological and Subjective Negative Emotional Reactivity in Healthy Older Adults. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100342. [PMID: 39092138 PMCID: PMC11293512 DOI: 10.1016/j.bpsgos.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.
Collapse
Affiliation(s)
- Bianca Hoang-Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Sabrina E. Halavi
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Natalie M. Rotstein
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Norman M. Spivak
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- UCLA David Geffen School of Medicine Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Nolan H. Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Luka Cvijanovic
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sonja H. Hiller
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Mauricio Vallejo-Martelo
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Andrew Swenson
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sergio Becerra
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael Sun
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Malina E. Revett
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - David Kronemyer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rustin Berlow
- American Brain Stimulation Clinic, Del Mar, California
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Nanthia Suthana
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Martin M. Monti
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Susan Y. Bookheimer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Taylor P. Kuhn
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Du Y, Zhao W, Huang S, Huang C, Li C, Chen Y, Huang Y, Yang L, Li C, Zhang H, Guo H, Liu J. Gray Matter Thickness and Subcortical Nuclear Volume in Men After SARS-CoV-2 Omicron Infection. JAMA Netw Open 2023; 6:e2345626. [PMID: 38032639 PMCID: PMC10690469 DOI: 10.1001/jamanetworkopen.2023.45626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Importance The clinical manifestations and effects on the brain of the SARS-CoV-2 Omicron variant in the acute postinfection phase remain unclear. Objective To investigate the pathophysiological mechanisms underlying clinical symptoms and changes to gray matter and subcortical nuclei among male patients after Omicron infection and to provide an imaging basis for early detection and intervention. Design, Setting, and Participants In this cohort study, a total of 207 men underwent health screening magnetic resonance imaging scans between August 28 and September 18, 2022; among them, 98 provided complete imaging and neuropsychiatric data. Sixty-one participants with Omicron infection were reevaluated after infection (January 6 to 14, 2023). Neuropsychiatric data, clinical symptoms, and magnetic resonance imaging data were collected in the acute post-Omicron period, and their clinical symptoms were followed up after 3 months. Gray matter indexes and subcortical nuclear volumes were analyzed. Associations between changes in gray matter and neuropsychiatric data were evaluated with correlation analyses. Exposures Gray matter thickness and subcortical nuclear volume change data were compared before and after Omicron infection. Main Outcomes and Measures The gray matter indexes and subcutaneous nuclear volume were generated from the 3-dimensional magnetization-prepared rapid acquisition gradient echo and were calculated with imaging software. Results Ninety-eight men underwent complete baseline data collection; of these, 61 (mean [SD] age, 43.1 [9.9] years) voluntarily enrolled in post-Omicron follow-up and 17 (mean [SD] age, 43.5 [10.0] years) voluntarily enrolled in 3-month follow-up. Compared with pre-Omicron measures, Beck Anxiety Inventory scores were significantly increased (median, 4.50 [IQR, 1.00-7.00] to 4.00 [IQR, 2.00-9.75]; P = .006) and depressive distress scores were significantly decreased (median, 18.00 [IQR, 16.00-20.22] to 16.00 [IQR, 15.00-19.00]; P = .003) at the acute post-Omicron follow-up. Fever, headache, fatigue, myalgia, cough, and dyspnea were the main symptoms during the post-Omicron follow-up; among the participants in the 3-month follow-up, fever (11 [64.7%] vs 2 [11.8%]; P = .01), myalgia (10 [58.8%] vs 3 (17.6%]; P = .04), and cough (12 [70.6%] vs 4 [23.5%]; P = .02) were significantly improved. The gray matter thickness in the left precuneus (mean [SD], 2.7 [0.3] to 2.6 [0.2] mm; P < .001) and right lateral occipital region (mean [SD], 2.8 [0.2] to 2.7 [0.2] and 2.5 [0.2] to 2.5 [0.2] mm; P < .001 for both) and the ratio of the right hippocampus volume to the total intracranial volume (mean [SD]. 0.003 [0.0003] to 0.003 [0.0002]; P = .04) were significantly reduced in the post-Omicron follow-up. The febrile group had reduced sulcus depth of the right inferior parietal region compared with the nonfebrile group (mean [SD], 3.9 [2.3] to 4.8 [1.1]; P = .048. In the post-Omicron period, the thickness of the left precuneus was negatively correlated with the Beck Anxiety Inventory scores (r = -0.39; P = .002; false discovery rate P = .02), and the ratio of the right hippocampus to the total intracranial volume was positively correlated with the Word Fluency Test scores (r = 0.34; P = .007). Conclusions and Relevance In this cohort study of male patients infected with the Omicron variant, the duration of symptoms in multiple systems after infection was short. Changes in gray matter thickness and subcortical nuclear volume injury were observed in the post-Omicron period. These findings provide new insights into the emotional and cognitive mechanisms of an Omicron infection, demonstrate its association with alterations to the nervous system, and verify an imaging basis for early detection and intervention of neurological sequelae.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Hunan Province, Changsha, China
| | - Sihong Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijie Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cong Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, Wuhan, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Hunan Province, Changsha, China
| |
Collapse
|
3
|
Mahdavi KD, Jordan SE, Jordan KG, Rindner ES, Haroon JM, Habelhah B, Becerra SA, Surya JR, Venkatraman V, Zielinski MA, Spivak NM, Bystritsky A, Kuhn TP. A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. J Psychiatr Res 2023; 168:125-132. [PMID: 39491902 DOI: 10.1016/j.jpsychires.2023.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVE This study intended to evaluate a possible therapeutic effect among patients with treatment-refractory generalized anxiety disorder (trGAD) by using transcranial focused ultrasound (tfUS) to modulate amygdalar activity. METHODS Twenty-five participants with severe trGAD as outlined in the DSM-V were recruited from Los Angeles neurology and psychiatry clinics. All participants completed eight weekly 10-min tfUS sessions targeting the right amygdala. Functional and structural neuroimaging were used to navigate individual targets. Outcome measures including the Hamilton Anxiety Inventory (HAM-A, primary outcome) and Beck Anxiety Inventory (BAI) were collected at baseline and protocol completion. Upon study completion, participants were asked to report perceived change in clinical status using the Patient Global Impression - Improvement (PGI-I) scale. Data was collected from May 2020 through January 2023. RESULTS All participants were able to tolerate treatment without notable side effects. No adverse events were reported. A Wilcoxon Signed-Rank Test was conducted to compare pre- and post-tfUS measures of anxiety. tfUS resulted in a significant decrease in anxiety as measured by the HAM-A (W = -3.69, p < 0.001, pre-post-Δ = -12.64 ± 12.51) and the BAI (W = -3.94, p < 0.001, pre-post-Δ = -12.88 ± 10.42). Sixteen (16) of twenty-five (25) total participants indicated clinically significant benefit on PGI-I scores at completion. CONCLUSION This study provides preliminary evidence supporting the safety and efficacy of tfUS as a clinical intervention. These results warrant further investigation of tfUS as a therapeutic intervention for anxiety and other psychiatric and neurological disorders. CLINICALTRIALS GOV IDENTIFIER NCT04250441.
Collapse
Affiliation(s)
- Kennedy D Mahdavi
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA.
| | - Sheldon E Jordan
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA; Department of Neurology, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Kaya G Jordan
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Elisabeth S Rindner
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Jonathan M Haroon
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Barshen Habelhah
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Sergio A Becerra
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Jean Rama Surya
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Victoria Venkatraman
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Margaret A Zielinski
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Norman M Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Taylor P Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| |
Collapse
|
4
|
Rajkumar RP. Editorial: Case reports in anxiety and stress. Front Psychiatry 2023; 14:1291083. [PMID: 37822791 PMCID: PMC10562692 DOI: 10.3389/fpsyt.2023.1291083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
5
|
Wang Y, Xie C, Xu Y, Zhang Y, Zhu C, Zhou K. Cerebellar irradiation does not cause hyperactivity, fear, and anxiety-related disorders in the juvenile rat brain. Eur Radiol Exp 2022; 6:57. [PMCID: PMC9663786 DOI: 10.1186/s41747-022-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
The cerebellum is involved in hyperactivity, fear, and anxiety disorders that could be induced by whole-brain irradiation (WBI). However, whether cerebellar irradiation alone (CIA) could induce these disorders is unknown. We investigated the effect of CIA in an animal model.
Methods
Eleven-day-old rat pups underwent a single 3-Gy dose of either WBI (n = 28) or CIA (n = 20), while 34 rat pups were sham-irradiated (controls). Cell death was evaluated in the subgranular zone of the hippocampus by counting pyknotic cells after haematoxylin/eosin staining at 6 h after irradiation for 10, 8, and 9 pups, respectively. Behavioural changes were evaluated via open-field test at 6 weeks for 18, 12, and 25 pups, respectively. Unpaired two-tailed t-test and one-way and two-way repeated ANOVA were used.
Results
Massive cell death in cerebellar external granular layer was detected at 6 h after CIA (1,419 ± 211 mm, mean ± S.E.M. versus controls (68 ± 12 mm) (p < 0.001)), while no significant difference between CIA (1,419 ± 211 mm) versus WBI (1,433 ± 107 mm) (p = 0.955) was found. At open-field behavioural test, running distance, activity, wall distance, middle zone visit times, and duration were higher for WBI versus controls (p < 0.010), but no difference between CIA and controls was found (p > 0.05).
Conclusions
Although the cerebellum is involved in hyperactivity, fear, and anxiety disorders, CIA did not induce these disorders, indicating that WBI-induced cerebellar injury does not directly cause these behavioural abnormalities after WBI. Thus, targeting the cerebellum alone may not be enough to rescue or reduce these behavioural abnormalities after WBI.
Collapse
|
6
|
Ma X, Yu W, Yao P, Zhu Y, Dai J, He X, Liu B, Xu C, Shao X, Fang J, Shen Z. Afferent and efferent projections of the rostral anterior cingulate cortex in young and middle-aged mice. Front Aging Neurosci 2022; 14:960868. [PMID: 36062147 PMCID: PMC9428471 DOI: 10.3389/fnagi.2022.960868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Research shows that across life, the incidence of mental illness is highest in the young. In the context of the COVID-19 pandemic, mental health issues of the young in particular have received global attention. The rostral anterior cingulate cortex (rACC) plays an important role in psychiatric disorders and chronic pain-psychiatric comorbidities. However, it remains unknown whether or how the afferent and efferent circuits of the rACC change with aging. In this study, we microinjected a retrograde tracer virus and an anterograde trans-monosynaptic virus into the rACC of young and middle-aged mice (both male and female), and systematically and quantitatively analyzed the whole-brain afferent and efferent connections of rACC at different ages and sexes. Notably, in young and middle-aged mice, afferents of the rACC belong to four groups of brain structures arising mainly from the amygdala [mainly basolateral amygdaloid nucleus (BLA)] and cerebral cortex (mainly orbital cortex), with a small part originating from the basal forebrain and thalamus. In contrast, efferents of the rACC belong to four groups of brain structures mainly projecting to the thalamus (mainly ventral anterior-lateral/ventromedial thalamic nucleus (VAL/VM)], with a very small part projecting to the amygdala, basal forebrain, and cerebral cortex. Compared with young mice, the BLA-rACC circuit in middle-aged mice (male and female) did not change significantly, while the rACC-VAL/VM circuit in middle-aged mice (male and female) decreased significantly. In conclusion, this study comprehensively analyzed the input-output neural projections of rACC in mice of different ages and sexes and provided preliminary evidence for further targeted research.
Collapse
|
7
|
MALAKCIOGLU C. Validity and Reliability of the Anxiety Assessment Scale: A New Three-dimensional Perspective. Medeni Med J 2022; 37:165-172. [PMID: 35735160 PMCID: PMC9234362 DOI: 10.4274/mmj.galenos.2022.75318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Anxiety is inseparable from life due to its survival value. Up-to-date and multidimensional assessment of anxiety is necessary to develop effective interventions to cope with high anxiety levels. This study was conducted to examine the psychometrics of the Anxiety Assessment Scale (AAS). Methods: Data were collected between January and April 2021 from 756 students (42.9% males and 57.1% females) studying medicine at Istanbul Medeniyet University. Seven experts evaluated the items to detect content validity in the final application form. Both exploratory and confirmatory factor analyses (EFA and CFA) were used for construct validity. The Beck Anxiety Inventory was also applied for concurrent validity. Test-retest reliabilities were calculated within four weeks. IBM SPSS 25 and AMOS 24 were used for statistical analyses. Results: Data were suitable for factor analyses (Kaiser-Meyer-Olkin=0.800, chi-square=3018.854, df=45). The EFA showed the three-factor structure with 10 items, and 70.1% of the variance was explained. Factor loads of the items varied between 0.61 and 0.87; data-model fit was suitable (CFI=0.92, TLI=0.93, RMSEA=0.059, SRMR=0.046, chi-square/df=1.556) according to CFA. Concurrent scale validity was also confirmed by the Pearson correlation (r=0.167, p<0.01). The test-retest reliabilities (r) were all >0.5 (p<0.001). The Cronbach a coefficients were 0.845 (AAS), 0.770 (Physiological Tension=PT), 0.822 (Worrying=W), and 0.838 (Feeling Unsafe=FU). Conclusions: AAS is a reliable and valid measurement instrument to assess anxiety levels in three dimensions. AAS can be applied for research, psychological assessment, and other appropriate application purposes.
Collapse
|
8
|
Spivak NM, Sanguinetti JL, Monti MM. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sci 2022; 12:158. [PMID: 35203922 PMCID: PMC8870102 DOI: 10.3390/brainsci12020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
This article summarizes the field of focused ultrasound for use in neuromodulation and discusses different ways of targeting, delivering, and validating focused ultrasound. A discussion is focused on parameter space and different ongoing theories of ultrasonic neuromodulation. Current and future applications of the technique are discussed.
Collapse
Affiliation(s)
- Norman M. Spivak
- UCLA—Caltech Medical Scientist Training Program, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA;
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA;
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Martin M. Monti
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA;
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Kuhn T, Haroon J, Spivak NM. A Systematic Approach to Neuropsychiatric Intervention: Functional Neuroanatomy Underlying Symptom Domains as Targets for Treatment. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:45-54. [PMID: 35746937 PMCID: PMC9063598 DOI: 10.1176/appi.focus.20210024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An ever-growing population experiences a wide range of psychopathologies, and there is now more than ever a need for clear differential diagnoses between disorders. Furthering this need is the fact that many psychological, psychiatric, and neurological disorders have overlapping features. Functional neuroimaging has been shown to differentiate not only between the function of different brain structures but also between the roles of these structures in functional networks. The aim of this article is to aid in the goal of parsing out disorders on the basis of specific symptom domains by utilizing the most recent literature on functional networks. Current literature on the role of brain networks in relation to different psychopathological symptom domains is examined and corresponding circuit-based therapies that have been or may be used to treat them are discussed. Research on depression, obsession and compulsions, addiction, anxiety, and psychosis is reviewed. An understanding of networks and their specific dysfunctions opens the possibility of a new form of psychopathological treatment.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences (all authors) and UCLA-Caltech Medical Scientist Training Program (Spivak), David Geffen School of Medicine, University of California, Los Angeles
| | - Jonathan Haroon
- Department of Psychiatry and Biobehavioral Sciences (all authors) and UCLA-Caltech Medical Scientist Training Program (Spivak), David Geffen School of Medicine, University of California, Los Angeles
| | - Norman M Spivak
- Department of Psychiatry and Biobehavioral Sciences (all authors) and UCLA-Caltech Medical Scientist Training Program (Spivak), David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
10
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
11
|
Bibliography. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:76-78. [PMID: 35746926 PMCID: PMC9063592 DOI: 10.1176/appi.focus.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|