1
|
Cappon DB, Pascual-Leone A. Toward Precision Noninvasive Brain Stimulation. Am J Psychiatry 2024; 181:795-805. [PMID: 39217436 DOI: 10.1176/appi.ajp.20240643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Davide B Cappon
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| |
Collapse
|
2
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Ravan M, Noroozi A, Sanchez MM, Borden L, Alam N, Flor-Henry P, Colic S, Khodayari-Rostamabad A, Minuzzi L, Hasey G. Diagnostic deep learning algorithms that use resting EEG to distinguish major depressive disorder, bipolar disorder, and schizophrenia from each other and from healthy volunteers. J Affect Disord 2024; 346:285-298. [PMID: 37963517 DOI: 10.1016/j.jad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Mood disorders and schizophrenia affect millions worldwide. Currently, diagnosis is primarily determined by reported symptomatology. As symptoms may overlap, misdiagnosis is common, potentially leading to ineffective or destabilizing treatment. Diagnostic biomarkers could significantly improve clinical care by reducing dependence on symptomatic presentation. METHODS We used deep learning analysis (DLA) of resting electroencephalograph (EEG) to differentiate healthy control (HC) subjects (N = 239), from those with major depressive disorder (MDD) (N = 105), MDD-atypical (MDD-A) (N = 27), MDD-psychotic (MDD-P) (N = 35), bipolar disorder-depressed episode (BD-DE) (N = 71), BD-manic episode (BD-ME) (N = 49), and schizophrenia (SCZ) (N = 122) and also differentiate subjects with mental disorders on a pair-wise basis. DSM-III-R diagnoses were determined and supplemented by computerized Quick Diagnostic Interview Schedule. After EEG preprocessing, robust exact low-resolution electromagnetic tomography (ReLORETA) computed EEG sources for 82 brain regions. 20 % of all subjects were then set aside for independent testing. Feature selection methods were then used for the remaining subjects to identify brain source regions that are discriminating between diagnostic categories. RESULTS Pair-wise classification accuracies between 90 % and 100 % were obtained using independent test subjects whose data were not used for training purposes. The most frequently selected features across various pairs are in the postcentral, supramarginal, and fusiform gyri, the hypothalamus, and the left cuneus. Brain sites discriminating SCZ from HC were mainly in the left hemisphere while those separating BD-ME from HC were on the right. LIMITATIONS The use of superseded DSM-III-R diagnostic system and relatively small sample size in some disorder categories that may increase the risk of overestimation. CONCLUSIONS DLA of EEG could be trained to autonomously classify psychiatric disorders with over 90 % accuracy compared to an expert clinical team using standardized operational methods.
Collapse
Affiliation(s)
- Maryam Ravan
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA.
| | - Amin Noroozi
- Department of Digital, Technologies, and Arts, Staffordshire University, Staffordshire, England, UK
| | - Mary Margarette Sanchez
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Lee Borden
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Nafia Alam
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | | | - Sinisa Colic
- Department of Electrical Engineering, University of Toronto, Canada
| | | | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gary Hasey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Berkovitch L, Lee K, Ji JL, Helmer M, Rahmati M, Demšar J, Kraljič A, Matkovič A, Tamayo Z, Murray JD, Repovš G, Krystal JH, Martin WJ, Fonteneau C, Anticevic A. A common symptom geometry of mood improvement under sertraline and placebo associated with distinct neural patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23300019. [PMID: 38168378 PMCID: PMC10760263 DOI: 10.1101/2023.12.15.23300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Importance Understanding the mechanisms of major depressive disorder (MDD) improvement is a key challenge to determine effective personalized treatments. Objective To perform a secondary analysis quantifying neural-to-symptom relationships in MDD as a function of antidepressant treatment. Design Double blind randomized controlled trial. Setting Multicenter. Participants Patients with early onset recurrent depression from the public Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study. Interventions Either sertraline or placebo during 8 weeks (stage 1), and according to response a second line of treatment for 8 additional weeks (stage 2). Main Outcomes and Measures To identify a data-driven pattern of symptom variations during these two stages, we performed a Principal Component Analysis (PCA) on the variations of individual items of four clinical scales measuring depression, anxiety, suicidal ideas and manic-like symptoms, resulting in a univariate measure of clinical improvement. We then investigated how initial clinical and neural factors predicted this measure during stage 1. To do so, we extracted resting-state global brain connectivity (GBC) at baseline at the individual level using a whole-brain functional network parcellation. In turn, we computed a linear model for each brain parcel with individual data-driven clinical improvement scores during stage 1 for each group. Results 192 patients (127 women), age 37.7 years old (standard deviation: 13.5), were included. The first PC (PC1) capturing 20% of clinical variation was similar across treatment groups at stage 1 and stage 2, suggesting a reproducible pattern of symptom improvement. PC1 patients' scores significantly differed according to treatment during stage 1, whereas no difference of response was evidenced between groups with the Clinical Global Impressions (CGI). Baseline GBC correlated to stage 1 PC1 scores in the sertraline, but not in the placebo group. Conclusions and Relevance Using data-driven reduction of symptoms scales, we identified a common profile of symptom improvement across placebo and sertraline. However, the neural patterns of baseline that mapped onto symptom improvement distinguished between treatment and placebo. Our results underscore that mapping from data-driven symptom improvement onto neural circuits is vital to detect treatment-responsive neural profiles that may aid in optimal patient selection for future trials.
Collapse
Affiliation(s)
- Lucie Berkovitch
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
- Université Paris Cité, Paris, France
- Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
- Unicog, Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France
| | - Kangjoo Lee
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jie Lisa Ji
- Manifest Technologies, Inc. New Haven, CT, USA
| | | | | | - Jure Demšar
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksij Kraljič
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Matkovič
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - Zailyn Tamayo
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
| | - John D Murray
- Department of Psychological and Brain Science, Dartmouth College, Hanover, NH, USA
| | - Grega Repovš
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - John H Krystal
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Clara Fonteneau
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alan Anticevic
- Department of Psychiatry, Neuroscience, and Psychology, Yale University School of Medicine, New Haven, CT, USA
- Division of Neurocognition, Neurocomputation, Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Gao Y, Guo X, Zhong Y, Liu X, Tian S, Deng J, Lin X, Bao Y, Lu L, Wang G. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder. J Affect Disord 2023; 332:136-142. [PMID: 36990286 DOI: 10.1016/j.jad.2023.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Gaining insight into abnormal functional brain network homogeneity (NH) has the potential to aid efforts to target or otherwise study major depressive disorder (MDD). The NH of the dorsal attention network (DAN) in first-episode treatment-naive MDD patients, however, has yet to be studied. As such, the present study was developed to explore the NH of the DAN in order to determine the ability of this parameter to differentiate between MDD patients and healthy control (HC) individuals. METHODS This study included 73 patients with first-episode treatment-naive MDD and 73 age-, gender-, and educational level-matched healthy controls. All participants completed the attentional network test (ANT), Hamilton Rating Scale for Depression (HRSD), and resting-state functional magnetic resonance imaging (rs-fMRI) analyses. A group independent component analysis (ICA) was used to identify the DAN and to compute the NH of the DAN in patients with MDD. Spearman's rank correlation analyses were used to explore relationships between significant NH abnormalities in MDD patients, clinical parameters, and executive control reaction time. RESULTS Relative to HCs, patients exhibited reduced NH in the left supramarginal gyrus (SMG). Support vector machine (SVM) analyses and receiver operating characteristic curves indicated that the NH of the left SMG could be used to differentiate between HCs and MDD patients with respective accuracy, specificity, sensitivity, and AUC values of 92.47 %, 91.78 %, 93.15 %, and 65.39 %. A significant positive correlation was observed between the left SMG NH values and HRSD scores among MDD patients. CONCLUSIONS These results suggest that NH changes in the DAN may offer value as a neuroimaging biomarker capable of differentiating between MDD patients and healthy individuals.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Zhong
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiaoxin Liu
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Shanshan Tian
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Jiahui Deng
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiao Lin
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Yanpin Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Lin Lu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|