1
|
Ahn JY, Hong YH, Kim KC, Kim JH, Lee SY, Lee JR, Lee EJ. Effect of human peripheral blood mononuclear cells (hPBMCs) on mouse endometrial cell proliferation: a potential therapeutics for endometrial regeneration. Gynecol Obstet Invest 2022; 87:105-115. [PMID: 35350012 DOI: 10.1159/000524232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The persistently thin endometrium is a major cause of repeated implantation failure; however, there is no definite treatment for it yet. This study aimed to confirm the potential of human peripheral blood mononuclear cells (hPBMCs) as a therapeutic agent for endometrial regeneration. DESIGN Experimental study Participants/Materials, Setting, Methods: To assess the in vitro effect of hPBMC, the human primary endometrial epithelial cell lines SNU-685 and SNU-1077 were co cultured with or without 1×10^5 hPBMCs for 24 hours. To evaluate the in vivo effect, either 1×10^5 hPBMCs in PBS or PBS alone were injected into the left uterine horn of NOD-SCID mice, and the right untreated uterine horn was used as control. RESULTS Co-culture with hPBMCs stimulated significant proliferation in both SNU-685 and SNU-1077 cell lines (p=0.002 and 0.044, respectively). Moreover, treatment with hPBMCs significantly increased the thickness in all parts of the endometrium compared with that in the untreated control uterine horn (proximal: 1.69±0.19 vs. 1.00±0.10, p=0.009; middle: 1.51±0.14 vs. 1.00±0.12, p=0.010; distal: 1.72±0.22 vs. 1.00±0.12, p=0.003, respectively). Compared with the PBS injection group, the hPBMC injection group had significantly thickened endometrium in the middle (P=0.036) and distal segments (P=0.002) of the uterine horn. Immunohistochemical analysis revealed the presence of exogenously injected hPBMCs in the uterus of recipient mice. hPBMC-recipient mice had cyclic uterus with normal histology in the endometrium. LIMITATIONS hPBMCs were not applied directly to a mouse model with thin endometrium, so further study is needed. CONCLUSION The beneficial effect of hPBMCs on endometrium may suggest their clinical feasibility for the safe treatment of infertile patients with persistently thin endometrium.
Collapse
Affiliation(s)
- Ji Yeon Ahn
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeon Hee Hong
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keun Cheon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Araki Y. Embryos, cancers, and parasites: Potential applications to the study of reproductive biology in view of their similarity as biological phenomena. Reprod Med Biol 2022; 21:e12447. [PMID: 35386372 PMCID: PMC8967296 DOI: 10.1002/rmb2.12447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background At present, there are so many living things on the earth. Most of these organisms have a reproductive strategy called sexual reproduction. Among organisms that reproduce sexually, mammals have an extremely complex and seemingly unnatural method of reproduction, or viviparity. Methods As an approach to understanding the nature of viviparity, the author have tried to outline the common life phenomena of embryos, cancers, and parasites based on the literature to date, with internal parasites as the keyword. Main findings Embryo, cancer, and parasite are constituted as a systemic interaction with the host (mother). Based on these facts, the author proposed the hypothesis that in the case of mammals, "the fetus is essentially harmful to the mother", and that the parasitic fetus grows by skillfully evading the mother's foreign body exclusion mechanism. Conclusion Comparative studies of "embryos", "cancers", and "parasites" as foreign bodies have the potential to produce unexpected discoveries in their respective fields. It is important to consider the evolutionary time axis that the basic structure of our mammalian body arose over 200 million years from the Mesozoic Triassic, the period immediately after the Paleozoic Era, when life on Earth became massively extinct.
Collapse
Affiliation(s)
- Yoshihiko Araki
- Institute for Environmental & Gender‐specific MedicineJuntendo University Graduate School of MedicineChibaJapan
- Department of Obstetrics & GynecologyJuntendo University Graduate School of MedicineTokyoJapan
- Division of Microbiology and ImmunologyDepartment of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
3
|
Veraguas-Davila D, Cordero MF, Saez S, Saez-Ruiz D, Gonzalez A, Saravia F, Castro FO, Rodriguez-Alvarez L. Domestic cat embryos generated without zona pellucida are capable of developing in vitro but exhibit abnormal gene expression and a decreased implantation rate. Theriogenology 2021; 174:36-46. [PMID: 34416562 DOI: 10.1016/j.theriogenology.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
The removal of the zona pellucida has been used to improve the in vitro development of domestic cat embryos generated by IVF and SCNT. However, the in vivo development of domestic cat embryos generated without the zona pellucida has not been evaluated. The objective of this study was to evaluate the effects of zona pellucida removal on the in vitro and in vivo development of domestic cat embryos generated by IVF. For this purpose, two experimental groups were created: 1) domestic cat embryos cultured in vitro (Zona-intact group, ZI) and 2) domestic cat embryos cultured in vitro without the zona pellucida (Zona-free group, ZF). Domestic cat embryos were generated by IVF and cultured in vitro for 8 days. In the ZF group, the zona pellucida was removed after IVF, and embryos were cultured using the well of the well system (WOW). Cleavage, morula and blastocyst rates were evaluated in both groups. The diameter and total cell number of blastocysts were assessed. Relative expression of pluripotency (OCT4, SOX2 and NANOG), differentiation (CDX2 and GATA6) and apoptotic markers (BAX and BCL2) was evaluated in blastocysts. Finally, to evaluate in vivo development, embryos at days 5, 6 and 7 of development were transferred into recipient domestic cats, and ultrasonography was performed to evaluate implantation. No differences were observed in the cleavage, morula or blastocyst rates between embryos from the ZI and ZF groups. The diameter (mean ± SD) of blastocysts from the ZF group was greater (253.4 ± 83.3 μm) than that from the ZI group (210.5 ± 78.5 μm). No differences were observed in the relative expression of OCT4, CDX2 or GATA6. However, the relative expression of SOX2 and NANOG was significantly reduced in ZF blastocysts compared to ZI blastocysts. Furthermore, the relative expression of BAX was higher in ZF blastocysts than in ZI blastocysts. Finally, four pregnancies were confirmed after the transfer of ZI embryos (n = 110). However, no pregnancies were observed after the transfer of ZF embryos at the morula or blastocyst stage (n = 56). In conclusion, domestic cat embryos cultured without the zona pellucida were able to develop in vitro until the blastocyst stage. However, the removal of the zona pellucida negatively affected the gene expression of pluripotency and apoptosis markers, and ZF embryos were unable to implant. This might indicate that the removal of the zona pellucida is detrimental for the implantation and in vivo development of domestic cat embryos.
Collapse
Affiliation(s)
- Daniel Veraguas-Davila
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile.
| | - Maria Francisca Cordero
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Soledad Saez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Darling Saez-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Alejandro Gonzalez
- Department of Clinical Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | | |
Collapse
|
4
|
Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. BIOLOGY 2021; 10:biology10020159. [PMID: 33671276 PMCID: PMC7923199 DOI: 10.3390/biology10020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor β1 (TGF-β1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-β1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-β1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.
Collapse
|
5
|
Parrilla I, Martinez CA, Cambra JM, Lucas X, Ferreira-Dias G, Rodriguez-Martinez H, Cuello C, Gil MA, Martinez EA. Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals (Basel) 2020; 10:ani10112028. [PMID: 33158034 PMCID: PMC7692685 DOI: 10.3390/ani10112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary A proper uterine environment is basic for obtaining optimal embryo transfer outputs in domestic species, including the pig. However, scarce information is available about the uterine immune response of recipient (uninseminated) sows when receiving embryos during embryo transfer. Endometrial cytokine profile is among the main factors regulating uterine receptivity to embryos. In this study, using Luminex MAP® technology, we found important differences in the endometrial production in most of the 16 cytokines analyzed between recipient sows and embryo-bearing (inseminated) sows six days after estrus, with a predominant cytokine anti-inflammatory environment in the embryo-bearing endometria. These observations suggest that insemination components and/or early embryos induce an endometrium immune-tolerant cytokine profile at Day 6 of the cycle. The findings could contribute importantly to design strategies to maximize the reproductive performance of recipients after embryo transfer in swine. Abstract In the context of porcine embryo transfer (ET) technology, understanding the tightly regulated local uterine immune environment is crucial to achieve an adequate interaction between the transferred embryos and the receiving endometrium. However, information is limited on the uterine immune status of cyclic-recipient sows when receiving embryos during ET. The present study postulated that the anti- and proinflammatory cytokine profile 6 days after the onset of estrus differs between endometria from uninseminated cyclic sows and blastocyst-bearing sows. On Day 6 of the cycle, endometrial explants were collected from sows inseminated or not inseminated during the postweaning estrus and cultured for 22 h. The culture medium was then analyzed for the contents of a total of 16 cytokines using Luminex MAP® technology. The results showed important differences in the endometrial production of most cytokines between the sow categories, with a predominant anti-inflammatory environment displayed by the blastocyst-bearing endometria. These findings suggest that sperm, seminal plasma (SP) and/or early embryos modify the uterine environment by inducing an immune-tolerant cytokine profile already visible at Day 6. Whether the SP or some of its active components may help to develop strategies to maximize the reproductive performance of recipients after ET needs further investigation.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Correspondence: (I.P.); (C.A.M.)
| | - Cristina A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
- Correspondence: (I.P.); (C.A.M.)
| | - Josep M. Cambra
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Xiomara Lucas
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Cristina Cuello
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Maria A. Gil
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Emilio A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| |
Collapse
|
6
|
Pourmoghadam Z, Soltani-Zangbar MS, Sheikhansari G, Azizi R, Eghbal-Fard S, Mohammadi H, Siahmansouri H, Aghebati-Maleki L, Danaii S, Mehdizadeh A, Hojjat-Farsangi M, Motavalli R, Yousefi M. Intrauterine administration of autologous hCG- activated peripheral blood mononuclear cells improves pregnancy outcomes in patients with recurrent implantation failure; A double-blind, randomized control trial study. J Reprod Immunol 2020; 142:103182. [PMID: 32781360 DOI: 10.1016/j.jri.2020.103182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 01/30/2023]
Abstract
We aimed to investigate the effect of intrauterine administration of autologous hCG-activated PBMCs in RIF women with low Th-17/Treg cell ratio. 248 women with a history of implantation failure volunteered to receive PBMC-therapy. After immunologic consultation and doing flow cytometry analysis, 100 women with at least three IVF/ET failure who had low Th-17/Treg ratio in comparison with healthy control were enrolled in this study. These 100 patients were randomly divided into two groups as PBMC receiving (n = 50) and controls (n = 50). Then PBMCs were obtained from patients and treated with hCG for 48 h. Afterward, PBMCs were administered into the uterine cavity of the patient in the study group, two days before ET. The concentration of inflammatory cytokines was examined in the supernatant of cultured PBMCs after 2, 24, and 48 h of incubation using the ELISA method. The frequency of Th-17, Treg, and the Th-17/Treg ratio was significantly lower in RIF women than the healthy controls (P < 0.0001). The secretion of inflammatory cytokines was significantly higher after 48 h compared to 2 and 24 h (P < 0.0001). The pregnancy and live birth rate were significantly increased in women undergoing the PBMC-therapy compared to control (PBS-injecting) group (P = 0.032 and P = 0.047, respectively). The miscarriage rate was considerably lower in PBMC-therapy group (P = 0.029). Our findings suggest that intrauterine administration of autologous in vitro hCG-activated PBMCs improves pregnancy outcomes in patients with at least three IVF/ET failures.
Collapse
Affiliation(s)
- Zahra Pourmoghadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Golshan Sheikhansari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Etiology and management of recurrent implantation failure: A focus on intra-uterine PBMC-therapy for RIF. J Reprod Immunol 2020; 139:103121. [DOI: 10.1016/j.jri.2020.103121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
|
8
|
Fujiwara H, Ono M, Sato Y, Imakawa K, Iizuka T, Kagami K, Fujiwara T, Horie A, Tani H, Hattori A, Daikoku T, Araki Y. Promoting Roles of Embryonic Signals in Embryo Implantation and Placentation in Cooperation with Endocrine and Immune Systems. Int J Mol Sci 2020; 21:ijms21051885. [PMID: 32164226 PMCID: PMC7084435 DOI: 10.3390/ijms21051885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation in the uterus is an essential process for successful pregnancy in mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium, where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although the precise mechanisms remain unknown, it is widely accepted that maternal–embryo communications, including embryonic signals, improve the receptive ability of the sex steroid hormone-primed endometrium. The embryo may utilize repulsive forces produced by an Eph–ephrin system for its timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly, the embryonic signals are considered to act on maternal immune cells to induce immune tolerance. They also elicit local inflammation that promotes endometrial differentiation and maternal tissue remodeling during embryo implantation and placentation. Additional clarification of the immune control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation factor, zona pellucida degradation products, and laeverin, will aid in the further development of immunotherapy to minimize implantation failure in the future.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
- Correspondence: or ; Tel.: +81-(0)76-265-2425; Fax: +81-(0)76-234-4266
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Yukiyasu Sato
- Department of Obstetrics and Gynecology, Takamatsu Red Cross Hospital, Takamatsu 760-0017, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Tomoko Fujiwara
- Department of Home Science and Welfare, Kyoto Notre Dame University, Kyoto 606-0847, Japan;
| | - Akihito Horie
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Hirohiko Tani
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan;
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu 279-0021, Japan;
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Bos-Mikich A, Ferreira MO, de Oliveira R, Frantz N. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J Assist Reprod Genet 2019; 36:613-620. [PMID: 30610660 PMCID: PMC6504981 DOI: 10.1007/s10815-018-1386-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
The use of platelet-rich plasma (PRP) to improve endometrial receptivity is gaining increasing attention in assisted reproduction technologies. The authors report that autologous PRP intrauterine administration improves pregnancy and birth rates, particularly in cases of patients presenting poor endometrial growth. Different groups of scientists proposed a similar approach years ago using whole blood-derived products also to improve endometrial receptivity. The important role played by cytokines and growth factors during embryo implantation has been well-known for a long time. These signaling molecules are present and released by blood cells during physiological, normal endometrial growth and implantation. Similar blood mediators are released from platelet granules upon a blood vessel injury. Methods described for PRP preparation for intrauterine administration are not precise, and they seem to be similar to those used to prepare peripheral blood-derived products. Thus, it is possible that when preparing PRP from whole blood, the final plasma product used as "PRP" contains platelets in addition to the important cytokines and growth factors released by the peripheral blood mononuclear cells present in the whole blood. Precise knowledge of the identity, concentration, and effects of the individual blood factors, their origin, whether platelets or blood mononuclear cells, will greatly contribute to improve and to make results obtained in fertility treatments more repeatable.
Collapse
Affiliation(s)
- Adriana Bos-Mikich
- Department of Morphological Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Nilo Frantz
- nilo.frantz Medicina Reprodutiva, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Structural Changes of Zona Pellucida Surface of Immature, In vivo and In Vitro Matured Canine Oocytes Using Scanning Electron Microscopy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep 2018; 8:7850. [PMID: 29777205 PMCID: PMC5959944 DOI: 10.1038/s41598-018-26224-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Recent studies indicate that communication between the bovine embryo and the mother begins in the oviduct. Here, we aimed to investigate the effect of embryos on bovine oviducts for their immune responses using an in vitro model. First, zygotes were cultured with or without bovine oviduct epithelial cells (BOECs) for 4 days, when embryos had reached the 16-cell stage. At that time, we detected interferon-tau (IFNT) in embryos co-cultured with BOECs, but not in embryos cultured alone. Next, peripheral blood mononuclear cells (PBMCs) were incubated either in media from embryo alone cultures or from co-cultures of embryos with BOECs. The medium from embryo alone cultures did not modulate PBMCs gene expression; whereas the embryo-BOEC co-culture medium increased interferon-stimulated genes (ISGs: ISG15, OAS1, MX2), STAT1, PTGES and TGFB1 but suppressed IL17 expression in PBMCs. Both IFNT-treated BOEC culture medium and IFNT-supplemented fresh medium alone without BOEC, modulated PBMCs gene expressions similar to those by the embryo-BOEC co-culture medium. Further, specific antibody to IFNT neutralized the effect of embryo-BOEC co-culture medium on PBMCs gene expression. Our results indicate that BOECs stimulate embryos to produce IFNT, which then acts on immune cells to promote an anti-inflammatory response in the oviduct.
Collapse
Affiliation(s)
- Anup K Talukder
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.,Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad B Rashid
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.,Department of Physiology and Pharmacology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Mohamed S Yousef
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kazuya Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| |
Collapse
|
12
|
Martyniak M, Franczak A, Kotwica G. Interleukin-1 β system in the oviducts of pigs during the oestrous cycle and early pregnancy. Theriogenology 2017; 96:31-41. [DOI: 10.1016/j.theriogenology.2017.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 02/04/2023]
|
13
|
Talukder AK, Yousef MS, Rashid MB, Awai K, Acosta TJ, Shimizu T, Okuda K, Shimada M, Imakawa K, Miyamoto A. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J Reprod Dev 2017; 63:425-434. [PMID: 28603222 PMCID: PMC5593094 DOI: 10.1262/jrd.2017-056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent observations suggest that the bovine uterus starts to react to the early embryo immediately after its arrival from the oviduct. The present study aimed to investigate the effect of the early developing embryo on the immune-related gene profile in bovine uterine epithelial cells (BUECs) in vitro, and to further examine the impact of conditioned media (CM), either from embryo-BUEC co-culture or embryo culture alone, on gene expression in peripheral blood mononuclear cells (PBMCs). First, BUECs were co-cultured with morulae (n = 10) for D5-D9 (D0 = IVF), and gene expression in BUECs was analyzed. Subsequently, PBMCs were cultured in CM from embryo-BUEC co-culture or D5-D9 embryo culture, and gene expression was evaluated. In BUECs, the embryo induced interferon (IFN)-stimulated genes (ISGs: ISG15, OAS1, and MX2), a key factor for IFN-signaling (STAT1), and type-1 IFN receptors (IFNAR1 and IFNAR2), with suppression of NFkB2, NFkBIA and pro-inflammatory cytokines (TNFA and IL1B). The embryo also stimulated PTGES and PGE2 secretion in BUECs. In PBMCs, both CM from embryo-BUEC co-culture and embryo culture alone induced ISGs, STAT1 and TGFB1, while suppressing TNFA and IL17. Similarly, interferon tau (IFNT) at 100 pg/ml suppressed NFkB2, TNFA and IL1B in BUECs, and also stimulated TGFB1 and suppressed TNFA in PBMCs. Our findings suggest that the bovine embryo, in the first four days in the uterus (D5-D9), starts to induce an anti-inflammatory response in epithelial cells and in immune cells. IFNT is likely to act as one of the intermediators for induction of the anti-inflammatory response in the bovine uterus.
Collapse
Affiliation(s)
- Anup K Talukder
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohamed S Yousef
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammad B Rashid
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,Department of Physiology and Pharmacology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kensuke Awai
- AG Embryo Support Co., Ltd., Hokkaido 080-0012, Japan
| | - Tomas J Acosta
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kiyoshi Okuda
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
14
|
Fujiwara H, Araki Y, Imakawa K, Saito S, Daikoku T, Shigeta M, Kanzaki H, Mori T. Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems--Step-by-Step Maternal Recognition of the Developing Embryo. Am J Reprod Immunol 2016; 75:281-9. [PMID: 26755274 DOI: 10.1111/aji.12478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 01/21/2023] Open
Abstract
In humans, HCG secreted from the implanting embryo stimulates progesterone production of the corpus luteum to maintain embryo implantation. Along with this endocrine system, current evidence suggests that the maternal immune system positively contributes to the embryo implantation. In mice, immune cells that have been sensitized with seminal fluid and then the developing embryo induce endometrial differentiation and promote embryo implantation. After hatching, HCG activates regulatory T and B cells through LH/HCG receptors and then stimulates uterine NK cells and monocytes through sugar chain receptors, to promote and maintain pregnancy. In accordance with the above, the intrauterine administration of HCG-treated PBMC was demonstrated to improve implantation rates in women with repeated implantation failures. These findings suggest that the maternal immune system undergoes functional changes by recognizing the developing embryos in a stepwise manner even from a pre-fertilization stage and facilitates embryo implantation in cooperation with the endocrine system.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | - Takahide Mori
- Academia for Repro-Regenerative Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Feltrin C, Cooper CA, Mohamad-Fauzi N, Rodrigues VHV, Aguiar LH, Gaudencio-Neto S, Martins LT, Calderón CEM, Morais AS, Carneiro IS, Almeida TM, Silva ING, Rodrigues JL, Maga EA, Murray JD, Libório AB, Bertolini LR, Bertolini M. Systemic Immunosuppression by Methylprednisolone and Pregnancy Rates in Goats Undergoing the Transfer of Cloned Embryos. Reprod Domest Anim 2014; 49:648-656. [DOI: 10.1111/rda.12342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/03/2014] [Indexed: 01/30/2023]
Affiliation(s)
- C Feltrin
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - CA Cooper
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - N Mohamad-Fauzi
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - VHV Rodrigues
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LH Aguiar
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - S Gaudencio-Neto
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LT Martins
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - CEM Calderón
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - AS Morais
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - IS Carneiro
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - TM Almeida
- Ceará State University; Fortaleza CE Brazil
| | - ING Silva
- Ceará State University; Fortaleza CE Brazil
| | - JL Rodrigues
- Laboratory of Biotechnology of Reproduction and Embryology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - EA Maga
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - JD Murray
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - AB Libório
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LR Bertolini
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - M Bertolini
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| |
Collapse
|
16
|
Jalali BM, Kitewska A, Wasielak M, Bodek G, Bogacki M. Effects of seminal plasma and the presence of a conceptus on regulation of lymphocyte-cytokine network in porcine endometrium. Mol Reprod Dev 2014; 81:270-81. [PMID: 24382630 DOI: 10.1002/mrd.22297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/26/2013] [Indexed: 11/06/2022]
Abstract
Infusion of seminal plasma in the uterus is known to elicit an instant inflammatory response in the porcine uterus, but whether or not it prepares a uterine immunological response to the presence of conceptuses is not well understood. Seminal plasma induced long-term modulatory effects and conceptus-induced immune changes in leukocyte populations were measured by flow cytometry and mRNAs for various cytokines by quantitative reverse-transcriptase PCR in porcine endometrium collected on Days 6 and 13 from cycling and pregnant animals or from animals given seminal plasma infusions. Seminal plasma infusion induced long-term modulatory effects, resulting in significantly more endometrial FoxP3-positive T-regulatory and T-helper cells 6 days after infusion as compared to cycling and pregnant animals. The number of T-cytotoxic and T-null cells did not change between the studied groups. The early molecular effects of seminal plasma were not observed at 13-days post-infusion, although animals on Day 13 of pregnancy did show significantly more T-cells (of any type investigated). Seminal plasma also showed a delayed effect on cytokine expression, specifically exhibiting a significant increase in interleukin 10 (IL10) and a decrease in granulocyte macrophage colony-stimulating factor (GMCSF) gene expression on Day 13 as compared to Day 6 of cycling or pregnant gilts. The results indicate a delayed regulatory effect of seminal plasma on immune responses in the porcine uterus, which are similar to immune changes generated by implanting conceptuses.
Collapse
Affiliation(s)
- Beenu Moza Jalali
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | | | |
Collapse
|
17
|
Hasegawa A, Tanaka H, Shibahara H. Infertility and Immunocontraception based on zona pellucida. Reprod Med Biol 2013; 13:1-9. [PMID: 29699147 DOI: 10.1007/s12522-013-0159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/15/2013] [Indexed: 01/19/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular matrix surrounding ovarian oocytes, ovulated eggs and preimplantation embryos. It plays several important roles at different stages of reproduction. Its constituent glycoproteins are expressed specifically in the ovary. It is thus possible to produce autoantibodies to ZP proteins that interfere with reproductive functions including folliculogenesis, fertilization and implantation. First, this article describes the history of anti-ZP antibodies detected in women with idiopathic infertility. Second, the current relationship between anti-ZP antibodies and infertility is discussed in relation to assisted reproductive medicine. Third, we introduce the latest studies of animal experiments involving the ZP. Finally, immunocontraceptive vaccine development using various ZP antigens is reviewed.
Collapse
Affiliation(s)
- Akiko Hasegawa
- Institute of Experimental Animal Sciences Hyogo College of Medicine 1-1 Mukogawa-cho 663-8501 Nishinomiya Hyogo Japan
- Department of Obstetrics and Gynecology Hyogo College of Medicine 1-1 Mukogawa-cho 663-8501 Nishinomiya Hyogo Japan
| | - Hiroyuki Tanaka
- Department of Obstetrics and Gynecology Hyogo College of Medicine 1-1 Mukogawa-cho 663-8501 Nishinomiya Hyogo Japan
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology Hyogo College of Medicine 1-1 Mukogawa-cho 663-8501 Nishinomiya Hyogo Japan
| |
Collapse
|
18
|
Jensen PL, Beck HC, Petersen J, Hreinsson J, Wånggren K, Laursen SB, Sørensen PD, Christensen ST, Andersen CY. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells. Stem Cells Dev 2013; 22:1126-35. [DOI: 10.1089/scd.2012.0239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pernille Linnert Jensen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
- ORIGIO a/s, Maaloev, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Odense, Denmark
| | - Jørgen Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Julius Hreinsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kjell Wånggren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | - Søren Tvorup Christensen
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Early developing pig embryos mediate their own environment in the maternal tract. PLoS One 2012; 7:e33625. [PMID: 22470458 PMCID: PMC3314662 DOI: 10.1371/journal.pone.0033625] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 01/19/2023] Open
Abstract
The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development.
Collapse
|
20
|
Abstract
A new progesterone antagonist, ulipristal has been made available as an emergency contraceptive. Ulipristal’s major mechanism of action as an emergency contraceptive has been ascribed to its ability to delay ovulation beyond the life span of the sperm. This paper analyzes the potential action of ulipristal (1) when unprotected intercourse and administration of ulipristal occur outside the fertility window and (2) when unprotected intercourse and administration of ulipristal occur at or within 24 hours of ovulation. When unprotected intercourse and the use of a single low dose of ulipristal occur outside of the fertility window, ulipristal behaves like a placebo. When unprotected intercourse and the use of a single low dose of ulipristal occur within the fertility window but before ovulation, ulipristal behaves like an emergency contraceptive by delaying ovulation and thereby preventing fertilization. When unprotected intercourse and the administration of ulipristal occur at or within 24 hours of ovulation, then ulipristal has an abortifacient action. It is proposed that the abortifacient mechanism of a low dose of ulipristal taken after fertilization but before implantation is due to the ability of ulipristal to block the maternal innate immune system to become immunotolerant to the paternal allogenic embryo. Progesterone’s critical immunotolerant actions involving early pregnancy factor, progesterone-induced blocking factor, and uterine natural killer cells are compromised by ulipristal.
Collapse
Affiliation(s)
- Ralph P Miech
- Department of Molecular Pharmacology, Physiology and Biotechnology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Okitsu O, Kiyokawa M, Oda T, Miyake K, Sato Y, Fujiwara H. Intrauterine administration of autologous peripheral blood mononuclear cells increases clinical pregnancy rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J Reprod Immunol 2011; 92:82-7. [PMID: 22035703 DOI: 10.1016/j.jri.2011.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 11/17/2022]
Abstract
Intrauterine administration of autologous peripheral blood mononuclear cells (PBMC) activated by HCG in vitro are reported to improve implantation rates in patients with repeated failure of IVF-ET. In this study, we examined the effects of intrauterine administration of freshly isolated PBMC on clinical pregnancy and the implantation rates of patients who received frozen/thawed embryo transfer by prospective cohort study. Patients who had not achieved a successful pregnancy despite at least one or more IVF-ET sessions were enrolled in this study (n = 253, 253 cycles). Based on the patient's treatment preferences, PBMC were freshly isolated from each patient and then administered to the intrauterine cavity of that patient. Frozen/thawed embryo transfer was performed and the success of implantation in the PBMC-treated group (n = 83, 83 cycles) was compared with that in the non-treated control groups (n = 170, 170 cycles). There were no significant differences in the clinical pregnancy rate (34.9% vs. 32.9%), implantation rate (21.6% vs. 21.1%) and live birth delivery rate (21.7% vs. 21.8%) between PBMC-treated and non-treated groups. However, when the analyses were restricted to patients who had three or more implantation failures, the clinical pregnancy rate and the implantation rate in the PBMC-treated group (42.1% and 25.0%, p<0.05; n = 19 and 32, respectively) were significantly higher than those in the non-treated group (16.7% and 9.4%, p<0.05; n = 36 and 64, respectively). These findings indicate that intrauterine administration of autologous PBMC freshly isolated from patients, effectively improves embryo implantation in patients with three or more IVF failures.
Collapse
Affiliation(s)
- Osamu Okitsu
- Center for Reproductive Medicine, Miyake Clinic, 369-8 Ofuku, Minami-ku, Okayama 701-0204, Japan.
| | | | | | | | | | | |
Collapse
|