1
|
Rosa-E-Silva ACJDS, Mamillapalli R, Rosa-E-Silva JC, Ucar A, Schwartz J, Taylor HS. Uterine administration of C-X-C motif chemokine ligand 12 increases the pregnancy rates in mice with induced endometriosis. F&S SCIENCE 2023; 4:65-73. [PMID: 36252793 DOI: 10.1016/j.xfss.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To study the effect of intrauterine injection of C-X-C motif chemokine ligand 12 (CXCL12), also known as a stem cell chemoattractant (stromal cell-derived factor 1), on fertility and endometrial receptivity in mice with endometriosis. DESIGN Laboratory study. SETTING Academic Medical Center. ANIMAL(S) Fifty-six mice underwent chemotherapy and bone marrow transplantation. Thirty-six of these mice underwent either surgery to induce endometriosis (n = 20) or sham surgery (n = 16). INTERVENTION(S) Injection of CXCL12 as a potential therapeutic agent to improve fertility in endometriosis. MAIN OUTCOME MEASURE(S) Pregnancy rate, bone marrow-derived cell (BMDC) recruitment and endometrial receptivity markers. RESULT(S) The mice with or without endometriosis received a single uterine injection of either CXCL12 or placebo. Uterine injection of CXCL12 increased the pregnancy rates in a mouse model of endometriosis. Mice were euthanized after delivery, and implantation markers homeobox A11, alpha-v beta-3 integrin, and progesterone receptor were analyzed by immunohistochemistry, whereas green fluorescent protein positive BMDC recruitment was quantified by immunohistochemistry and immunofluorescence. The sham surgery groups without endometriosis had the highest cumulative pregnancy rate (100%) regardless of CXCL12 treatment. The endometriosis group treated with placebo had the lowest pregnancy rate. An increased pregnancy rate was noted in the endometriosis group after treatment with CXCL12. There was also an increase in BMDC recruitment and endometrial expression of progesterone receptor and alpha-v beta-3 integrin in the endometriosis group that received CXCL12 compared with that in the endometriosis group that received placebo. CONCLUSION(S) Uterine injection of CXCL12 increased the pregnancy rates in a mouse model of endometriosis. These results suggest that CXCL12 has a potential role as a therapeutic agent in women with infertility related to endometriosis and potentially other endometrial receptivity defects.
Collapse
Affiliation(s)
- Ana Carolina Japur de Sá Rosa-E-Silva
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; Department of Gynecology and Obstetrics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brasil
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Julio Cesar Rosa-E-Silva
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; Department of Gynecology and Obstetrics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brasil
| | - Abdullah Ucar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Joshua Schwartz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol 2022; 10:826053. [PMID: 35938162 PMCID: PMC9354654 DOI: 10.3389/fcell.2022.826053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Successful pregnancy requires the maternal immune system to tolerate the semi-allogeneic embryo. A good trophoblast function is also essential for successful embryo implantation and subsequent placental development. Chemokines are initially described in recruiting leukocytes. There are rich chemokines and chemokine receptor system at the maternal–fetal interface. Numerous studies have reported that they not only regulate trophoblast biological behaviors but also participate in the decidual immune response. At the same time, the chemokine system builds an important communication network between fetally derived trophoblast cells and maternally derived decidual cells. However, abnormal functions of chemokines or chemokine receptors are involved in a series of pregnancy complications. As growing evidence points to the roles of chemokines in pregnancy, there is a great need to summarize the available data on this topic. This review aimed to describe the recent research progress on the regulation and function of the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also discussed the potential relationship between chemokines and pregnancy complications.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| |
Collapse
|
3
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
4
|
Ao D, Li DJ, Li MQ. CXCL12 in normal and pathological pregnancies: A review. Am J Reprod Immunol 2020; 84:e13280. [PMID: 32485053 DOI: 10.1111/aji.13280] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
The survival of allogeneic fetuses during pregnancy is a rather paradoxical phenomenon with a complex mechanism. Chemokine ligand12 (CXCL12) and its receptors CXC chemokine receptor (CXCR)4 and 7 are extensively found in placenta tissues and cells, including trophoblast cells, vascular endothelial cells, and decidual stromal and decidual immune cells (eg, NK cells and regulatory T cells). Evidence has illustrated that the CXClL12/CXCR4/CXCR7 axis could enhance the cross talk at the maternal-fetal interface through multiple processes, such as invasion and placental angiogenesis, which appears to be critical signaling components in placentation and fetal outcome. In addition, an increasing number of studies have demonstrated that the CXCL12/CXCR4/CXCR7 axis also stands out for its pleiotropic roles in several pregnancy-associated diseases (eg, recurrent spontaneous abortion (RSA), pre-eclampsia (PE), and preterm labor). In the present review, the different biological properties and signaling in physiological and pathological pregnancy conditions of CXCL12/CXCR4/CXCR7 axis were discussed, with the aim of obtaining a further understanding of the regulatory mechanisms and highlighting their potential as a target for therapeutic approaches.
Collapse
Affiliation(s)
- Deng Ao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Long Y, Jiang Y, Zeng J, Dang Y, Chen Y, Lin J, Wei H, Xia H, Long J, Luo C, Chen Z, Huang Y, Li M. The expression and biological function of chemokine CXCL12 and receptor CXCR4/CXCR7 in placenta accreta spectrum disorders. J Cell Mol Med 2020; 24:3167-3182. [PMID: 31991051 PMCID: PMC7077540 DOI: 10.1111/jcmm.14990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives Investigation of mechanism related to excessive invasion of trophoblast cells in placenta accreta spectrum disorders (PAS) provides more strategies and ideas for clinical diagnosis and treatment. Materials and Methods Blood and placental samples were collected from included patients. The distribution and expression of CXCL12, CXCR4 and CXCR7 proteins in the paraffin of placental tissue in the included cases were analysed, and we analyse the downstream pathways or key proteins involved in cell invasion. Results Firstly, our results determined that CXCL12 and CXCR4/CXCR7 were increased in extravillous trophoblastic cell (CXCL12: P < .001; CXCR4: P < .001; CXCR7: P < .001), and the expression levels were closely related to the invasion depth of trophoblastic cells. Secondly, CXCL12 has the potential to become a biochemical indicator of PAS since the high expression of placental trophoblast CXCL12 may be an important source of blood CXCL12. Using lentivirus‐mediated RNA interference and overexpression assay, it was found that both chemokine CXCL12 and receptor CXCR4/CXCR7 are associated with regulation of trophoblast cell proliferation, migration and invasion. Further results proved that through the activating the phosphorylation and increasing the expression of MLC and AKT proteins in the Rho/rock, PI3K/AKT signalling pathway, CXCL12, CXCR4 and CXCR7 could up‐regulate the expression of RhoA, Rac1 and Cdc42 proteins to promote the migration and invasion of extravillous trophoblastic cell and ultimately formate the placenta accrete compare to the normal placenta. Conclusions Our research proved that trophoblasts may contribute to a PAS‐associated increase in CXCL12 levels in maternal blood. CXCL12 is not only associated with biological roles of PAS, but may also be potential for prediction of PAS.
Collapse
Affiliation(s)
- Yu Long
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jingjing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jueying Lin
- Department of Gynecology and Obstetrics, The First People's Hospital of Nanning, Nanning, China
| | - Hongwei Wei
- Department of Gynecology and Obstetrics, The Maternal & Child Health Hospital, the Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hongwei Xia
- Department of Gynecology and Obstetrics, The Maternal & Child Health Hospital, the Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junqing Long
- Department of Gynecology and Obstetrics, The Maternal & Child Health Hospital, the Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cuizhen Luo
- Department of Gynecology and Obstetrics, The First People's Hospital of Nanning, Nanning, China
| | - Zhiwei Chen
- School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yaling Huang
- Wuming District Center for Disease Prevention and Control, Nanning, China
| | - MuJun Li
- Department of Reproductive Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Charkiewicz K, Goscik J, Raba G, Laudanski P. Syndecan 4, galectin 2, and death receptor 3 (DR3) as novel proteins in pathophysiology of preeclampsia. J Matern Fetal Neonatal Med 2019; 34:2965-2970. [PMID: 31608721 DOI: 10.1080/14767058.2019.1676410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Preeclampsia has the highest rate of obstetric morbidity and mortality. METHODS We recruited 21 women with preeclampsia and 27 women with uncomplicated pregnancies. We used a quantitative protein macroarray that allowed for analysis of 40 proteins. RESULTS We found a statistically significant increase in the concentration of DR3, LIF and a significant decrease of VEGF, PlGF, syndecan-4 and galectin-2, in the plasma of women with preeclampsia. CONCLUSIONS There are no previous studies assessing syndecan 4, galectin 2, and DR3 concentrations in women with preeclampsia; Our results indicate these proteins are new factors that play important roles in the immunological pathomechanism of preeclampsia.
Collapse
Affiliation(s)
- Karol Charkiewicz
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Białystok, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Białystok University of Technology, Białystok, Poland
| | - Grzegorz Raba
- Institute of Obstetric and Emergency Medicine, University of Rzeszow, Żurawica, Poland
| | - Piotr Laudanski
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Białystok, Poland.,Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Lee KM, Wilson GJ, Pingen M, Fukuoka A, Hansell CAH, Bartolini R, Medina-Ruiz L, Graham GJ. Placental chemokine compartmentalisation: A novel mammalian molecular control mechanism. PLoS Biol 2019; 17:e3000287. [PMID: 31141500 PMCID: PMC6557524 DOI: 10.1371/journal.pbio.3000287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/10/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022] Open
Abstract
Atypical chemokine receptor 2 (ACKR2) is a chemokine-scavenging receptor. ACKR2–/–embryos display a reduction in size of a novel, to our knowledge, embryonic skin macrophage population referred to as ‘intermediate’ cells. CC chemokine receptor 2 (CCR2)–/–embryos display an identical phenotype, indicating that these cells require CCR2 to enable them to populate embryonic skin. Further analysis revealed that ACKR2–/–embryos have higher circulating concentrations of the CCR2 ligand, CC ligand 2 (CCL2); thus, ACKR2 regulates intraembryonic CCL2 levels. We show that ACKR2 is strongly expressed by trophoblasts and that it blocks movement of inflammatory chemokines, such as CCL2, from the maternal decidua into the embryonic circulation. We propose that trophoblastic ACKR2 is responsible for ensuring chemokine compartmentalisation on the maternal decidua, without which chemokines enter the embryonic circulation, disrupting gradients essential for directed intraembryonic cell migration. Overall, therefore, we describe a novel, to our knowledge, molecular mechanism whereby maternal decidual chemokines can function in a compartmentalised fashion without interfering with intraembryonic leukocyte migration. These data suggest similar functions for other atypical chemokine receptors in the placenta and indicate that defects in such receptors may have unanticipated developmental consequences. A novel mechanism for molecular compartmentalisation in the placenta involves an atypical chemokine receptor that scavenges chemokines, blocking their drainage from the maternal face of the placenta into the embryo and thus protecting intraembryonic cellular migration processes.
Collapse
Affiliation(s)
- Kit Ming Lee
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gillian J. Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ayumi Fukuoka
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christopher A. H. Hansell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Han J, Yoo I, Lee S, Jung W, Kim HJ, Hyun SH, Lee E, Ka H. Atypical chemokine receptors 1, 2, 3 and 4: Expression and regulation in the endometrium during the estrous cycle and pregnancy and with somatic cell nucleus transfer-cloned embryos in pigs. Theriogenology 2019; 129:121-129. [PMID: 30844653 DOI: 10.1016/j.theriogenology.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Atypical chemokine receptor (ACKR) 1, ACKR2, ACKR3, and ACKR4, chemokine decoy receptors that lack G-protein-mediated signaling pathways, internalize and degrade chemokines to control their availability and function. Chemokines play important roles in the endometrium during the estrous cycle and pregnancy, but the expression and regulation of ACKRs have not been determined in pigs. Therefore, we examined the expression of ACKRs in the endometrium throughout the estrous cycle and pregnancy and in conceptus tissues in pigs. ACKR1, ACKR2, ACKR3, and ACKR4 mRNA was expressed in the endometrium, with higher levels of ACKR3 on day 12 of the estrous cycle than in pregnancy and higher levels of ACKR4 on day 15 of pregnancy than in the estrous cycle. ACKR1, ACKR2, and ACKR3, but not ACKR4, mRNA was detected in conceptus and chorioallantoic tissues during pregnancy. ACKR2 and ACKR3 mRNA and ACKR4 protein were mainly localized to luminal epithelial cells and weakly to glandular epithelial cells in the endometrium. Increasing doses of progesterone increased the expression of ACKR2 and ACKR4 and decreased the expression of ACKR3 in endometrial tissues. On day 12 of pregnancy, the expression of ACKR4 mRNA was lower in the endometria of gilts with somatic cell nucleus transfer-derived conceptuses than in the endometria of gilts carrying conceptuses derived from natural mating. These results indicate that the expression of ACKRs is dynamically regulated at the maternal-conceptus interface, suggesting that ACKR proteins might play critical roles in regulating endometrial chemokines to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hyun Jong Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Gangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
9
|
Graubner FR, Gram A, Kautz E, Bauersachs S, Aslan S, Agaoglu AR, Boos A, Kowalewski MP. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. Biol Reprod 2018. [PMID: 28651344 PMCID: PMC5803782 DOI: 10.1093/biolre/iox063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes.
Collapse
Affiliation(s)
- Felix R Graubner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ewa Kautz
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefan Bauersachs
- Institute of Agricultural Sciences, Animal Physiology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus
| | - Ali R Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Lim W, Bae H, Bazer FW, Song G. Cell-specific expression and signal transduction of C-C motif chemokine ligand 2 and atypical chemokine receptors in the porcine endometrium during early pregnancy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:312-323. [PMID: 29278679 DOI: 10.1016/j.dci.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Chemokines and atypical chemokine receptors (ACKRs; also known as chemokine decoy receptors) play an important role in reproductive immunology by recruiting leukocytes during early pregnancy. The aim of this study was to determine the expression of C-C motif chemokine ligand 2 (CCL2) and ACKRs in the endometrium during estrous cycle and early pregnancy, and to investigate the functional effects of CCL2 on porcine uterine luminal epithelial (pLE) cells. Our results indicated that CCL2, ACKR1, ACKR3, and ACKR4 were strongly detected in the glandular and luminal epithelium of the endometrium during early pregnancy compared to that in non-pregnant pigs. Recombinant CCL2 improved pLE cell proliferation via activation of the PI3K and MAPK pathways and suppression of endoplasmic reticulum (ER) stress by reducing the expression of ER stress regulatory genes. Collectively, these results provide novel insights into CCL2-mediated signaling mechanisms in the porcine endometrium at the maternal-fetal interface during early pregnancy.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Alam SMK, Jasti S, Kshirsagar SK, Tannetta DS, Dragovic RA, Redman CW, Sargent IL, Hodes HC, Nauser TL, Fortes T, Filler AM, Behan K, Martin DR, Fields TA, Petroff BK, Petroff MG. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 2017; 25:185-197. [PMID: 28481180 DOI: 10.1177/1933719117707053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many parallels exist between growth and development of the placenta and that of cancer. One parallel is shared expression of antigens that may have functional importance and may be recognized by the immune system. Here, we characterize expression and regulation of one such antigen, Trophoblast glycoprotein (TPGB; also called 5T4), in the placenta across gestation, in placentas of preeclamptic (PE) pregnancies, and in purified microvesicles and exosomes. METHODS Trophoblast glycoprotein expression was analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. Regulation of 5T4 in cytotrophoblast cells was examined under either differentiating conditions of epidermal growth factor or under varying oxygen conditions. Microvesicles and exosomes were purified from supernatant of cultured and perfused placentas. RESULTS Trophoblast glycoprotein expression was prominent at the microvillus surface of syncytiotrophoblast and on the extravillous trophoblast cells, with minimal expression in undifferentiated cytotrophoblasts and normal tissues. Trophoblast glycoprotein expression was elevated in malignant tumors. In cytotrophoblasts, 5T4 was induced by in vitro differentiation, and its messenger RNA (mRNA) was increased under conditions of low oxygen. PE placentas expressed higher 5T4 mRNA than matched control placentas. Trophoblast glycoprotein was prominent within shed placental microvesicles and exosomes. CONCLUSION Given the potential functional and known immunological importance of 5T4 in cancer, these studies reveal a class of proteins that may influence placental development and/or sensitize the maternal immune system. In extravillous trophoblasts, 5T4 may function in epithelial-to-mesenchymal transition during placentation. The role of syncytiotrophoblast 5T4 is unknown, but its abundance in shed syncytial vesicles may signify route of sensitization of the maternal immune system.
Collapse
Affiliation(s)
- S M K Alam
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - S Jasti
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Kshirsagar
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - D S Tannetta
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - R A Dragovic
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - C W Redman
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - I L Sargent
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - H C Hodes
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T L Nauser
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T Fortes
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - A M Filler
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - K Behan
- 7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | - T A Fields
- 8 Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - B K Petroff
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,9 Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - M G Petroff
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,10 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Imakawa K, Bai R, Fujiwara H, Ideta A, Aoyagi Y, Kusama K. Continuous model of conceptus implantation to the maternal endometrium. J Endocrinol 2017; 233:R53-R65. [PMID: 28213399 DOI: 10.1530/joe-16-0490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
As placental morphology as well as trophoblast characteristics exhibit wide diversity across mammalian species, underling molecules were also thought to vary greatly. In the majority of cases, however, regardless of the mode of implantation, physiological and biochemical processes in conceptus implantation to the maternal endometrium including the kinds of gene expression and their products are now considered to share many similarities. In fact, recent progress has identified that in addition to the hormones, cytokines, proteases and cell adhesion molecules classically characterized, molecules related to lymphocyte homing and epithelial-mesenchymal transition (EMT) are all required for the progression of conceptus implantation to placentation. In this review, therefore, the newest findings are all incorporated into the molecular and cellular events related to conceptus implantation to the maternal endometrium; primarily from non-invasive bovine placentation and also from invasive human implantation.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Animal Resource Science CenterGraduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Rulan Bai
- Animal Resource Science CenterGraduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Hiroshi Fujiwara
- Faculty of MedicineInstitute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Atsushi Ideta
- Zennoh Embryo Transfer CenterKamishihoro, Hokkaido, Japan
| | - Yoshito Aoyagi
- Zennoh Embryo Transfer CenterKamishihoro, Hokkaido, Japan
| | - Kazuya Kusama
- Animal Resource Science CenterGraduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| |
Collapse
|
13
|
Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016; 99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2mr1015-477r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 12/17/2022] Open
Abstract
Chemokines modulate immune responses through their ability to orchestrate the migration of target cells. Chemokines directly induce cell migration through a distinct set of 7 transmembrane domain G protein-coupled receptors but are also recognized by a small subfamily of atypical chemokine receptors, characterized by their inability to support chemotactic activity. Atypical chemokine receptors are now emerging as crucial regulatory components of chemokine networks in a wide range of physiologic and pathologic contexts. Although a new nomenclature has been approved recently to reflect their functional distinction from their conventional counterparts, a systematic view of this subfamily is still missing. This review discusses their biochemical and immunologic properties to identify potential unifying themes in this emerging family.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
14
|
Lu J, Zhou WH, Ren L, Zhang YZ. CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Exp Mol Pathol 2015; 100:184-91. [PMID: 26721717 DOI: 10.1016/j.yexmp.2015.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 11/26/2022]
Abstract
Preeclampsia is a pregnancy disorder with sudden onset of maternal hypertension and proteinuria, which is characterized by defective cytotrophoblast invasion, increased apoptosis in cytotrophoblast, and diminished syncytial differentiation. In this study, samples from 11 mild preeclamptic patients, 18 severe preeclamptic patients, and 21 normal pregnant women were collected. The expression level of CXCL12 and its two receptors (CXCR4 and CXCR7) in these samples and their relationship with apoptosis were investigated. Morphological change of trophoblast cells that was observed by scanning electron microscope (SEM) indicated a significant tendency of apoptosis in the preeclamptic placenta. Immunohistochemical staining showed that expression level of three proteins was significantly lower in severe preeclamptic placentas compared with normal placentas (P<0.05), whereas no significant difference was found between mild preeclamptic and normal placentas (P>0.05). Real time quantitative PCR (RT-qPCR) and Western blot showed that both mRNA and protein expression level of CXCR4, CXCR7, and CXCL12 of trophoblasts were lower in the severe preeclampsia group than that in the normal group (P<0.05 for mRNA, P<0.01 for protein). In conclusion, our data revealed that the roles of CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and may be linked to the occurrence and development of severe preeclampsia.
Collapse
Affiliation(s)
- Jing Lu
- Department of Obstetrics and Gynecology, Medicine Center for Human Reproduction, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Liang Ren
- Department of Obstetrics and Gynecology, Medicine Center for Human Reproduction, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Yuan-Zhen Zhang
- Department of Obstetrics and Gynecology, Medicine Center for Human Reproduction, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China.
| |
Collapse
|
15
|
Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:663-72. [PMID: 26188201 DOI: 10.1093/abbs/gmv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine CXCL12 and its receptor CXCR4 are important signaling components required for human blastocyst implantation and the progression of pregnancy. Growing evidence indicates that the CXCL12/CXCR4 axis can regulate trophoblast function and uterine spiral artery remodeling, which plays a fundamental role in placentation and fetal outcome. The orphan receptor CXCR7 is also believed to partly regulate the function of the CXCL12/CXCR4 axis. Additionally, the CXCL12/CXCR4/CXCR7 axis can enhance the cross-talk between trophoblasts and decidual cells such as uterine natural killer cells and decidual stromal cells which are involved in regulation of trophoblast differentiation and invasion and placental angiogenesis. In addition, recent studies proved that CXCL12 expression is elevated in the placenta and mid-trimester amniotic fluid of pregnant women with preeclampsia, implying that dysregulation of CXCL12 plays a role in the pathogenesis of preeclampsia. Further understanding of the regulatory mechanisms of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis may help to design novel therapeutic approaches for pregnancy-associated diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China The First Student Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Xueyi Li
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatism & Immunity, Xi-jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yilin Zhao
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Chao Fang
- Institute of Neurosciences, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingli Lian
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenli Gou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
16
|
ShRNA-mediated knock-down of CXCR7 increases TRAIL-sensitivity in MCF-7 breast cancer cells. Tumour Biol 2015; 36:7243-50. [PMID: 25894375 DOI: 10.1007/s13277-015-3432-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/07/2015] [Indexed: 10/23/2022] Open
Abstract
This study aims to investigate the effects of CXCR7-shRNA on TRAIL-mediated apoptosis and suppression of invasive migration and the underlying mechanisms. (1) We constructed CXCR-7-shRNA lentiviral vectors and confirmed their silencing efficiency in MCF-7 cells by RT-PCR analysis. (2) The effects of CXCR7 and/or TRAIL on cell proliferation were examined by MTT assay. (3) Trans well invasion assay was used to examine the effects of CXCR7 silencing and/or TRAIL on MCF-7 cell invasive migration. (4) Expression of Caspase-3, and Caspase-8, and MMP-2 and MMP-9 proteins was examined by Western blot analysis. (1) Viral titers were 2.95 × 10(8) TU/ml, 3.01 × 10(8) TU/ml, 3.26 × 10(8) TU/ml, and 3.08 × 10(8) TU/ml, respectively. (2) CHXR7 shRNAs markedly decreased CXCR7 mRNA expression in MCF-7 cells, among which CXCR7-shRNA-1 showed significantly higher rate of inhibition (P < 0.05). (3) Combination of TRAIL and CXCR7-shRNA-1 resulted in marked suppression of cell proliferation in time-dependent manner (P < 0.05). (4) Cell invasion capacity was inhibited in each experimental group as compared to blank control group at 48 h post treatments (P < 0.05). Among them, combination of TRAIL and CXCR7-shRNA had the highest inhibitory effect (P < 0.05). (5) Western blot analysis indicated that TRAIL alone does not affect CXCR7 expression, but either TRAIL + CXCR7 shRNA or CXCR7 shRNA alone markedly suppressed CXCR7 protein expression. Furthermore, combination of TRAIL and CXCR-7-shRNA significantly increased Caspase-3 and Caspase-8 expression and decreased MMP-2 and MMP-9 expression (P < 0.05). Knock-down of CXCR-7 expression leads to augmented TRAIL-mediated suppression of MCF-7 cell proliferation and invasion.
Collapse
|
17
|
Teoh PJ, Menzies FM, Hansell CAH, Clarke M, Waddell C, Burton GJ, Nelson SM, Nibbs RJB. Atypical Chemokine Receptor ACKR2 Mediates Chemokine Scavenging by Primary Human Trophoblasts and Can Regulate Fetal Growth, Placental Structure, and Neonatal Mortality in Mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:5218-28. [DOI: 10.4049/jimmunol.1401096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014; 11:438-48. [PMID: 25109684 DOI: 10.1038/cmi.2014.68] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Embryos express paternal antigens that are foreign to the mother, but the mother provides a special immune milieu at the fetal-maternal interface to permit rather than reject the embryo growth in the uterus until parturition by establishing precise crosstalk between the mother and the fetus. There are unanswered questions in the maintenance of pregnancy, including the poorly understood phenomenon of maternal tolerance to the allogeneic conceptus, and the remarkable biological roles of placental trophoblasts that invade the uterine wall. Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. It is increasingly evident that the gestational uterine microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the maternal-fetal interface and regulate multiple events that are closely associated with normal pregnancy. Here, we review the expression and function of chemokines and their receptors at the maternal-fetal interface, with a special focus on chemokine as a key component in trophoblast invasiveness and placental angiogenesis, recruitment and instruction of immune cells so as to form a fetus-supporting milieu during pregnancy. The chemokine network is also involved in pregnancy complications.
Collapse
|
19
|
Abstract
Chemokines have fundamental roles in regulating immune and inflammatory responses, primarily through their control of leukocyte migration and localization. The biological functions of chemokines are typically mediated by signalling through G protein-coupled chemokine receptors, but chemokines are also bound by a small family of atypical chemokine receptors (ACKRs), the members of which are unified by their inability to initiate classical signalling pathways after ligand binding. These ACKRs are emerging as crucial regulatory components of chemokine networks in a wide range of developmental, physiological and pathological contexts. In this Review, we discuss the biochemical and immunological properties of ACKRs and the potential unifying themes in this family, and we highlight recent studies that identify novel roles for these molecules in development , homeostasis, inflammatory disease, infection and cancer.
Collapse
|
20
|
Warner JA, Zwezdaryk KJ, Day B, Sullivan DE, Pridjian G, Morris CA. Human cytomegalovirus infection inhibits CXCL12- mediated migration and invasion of human extravillous cytotrophoblasts. Virol J 2012; 9:255. [PMID: 23116176 PMCID: PMC3545970 DOI: 10.1186/1743-422x-9-255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023] Open
Abstract
Background During the first trimester of pregnancy, a series of tightly regulated interactions govern the formation of a highly invasive population of fetal-derived extravillous cytotrophoblasts (EVT). Successful pregnancy is dependent on efficient invasion of the uterine wall and maternal spiral arteries by EVT. Dysregulated trophoblast invasion is associated with intrauterine growth restriction, birth defects, spontaneous abortion and preeclampsia. A number of soluble growth factors, cytokines, and chemokines modulate this process, fine-tuning the temporal and spatial aspects of cytotrophoblast invasion. In particular, the CXCL12/CXCR4 axis has been shown to specifically modulate cytotrophoblast differentiation, invasion, and survival throughout early pregnancy. Infection with human cytomegalovirus (HCMV) has been associated with impaired differentiation of cytotrophoblasts down the invasive pathway, specifically dysregulating the response to mitogens including epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In this study, the effect of HCMV infection on the CXCL12-mediated migration and invasion of the EVT cell line SGHPL-4 was investigated. Results Infection with HCMV significantly decreased secretion of CXCL12 by SGHPL-4 cells, and induced a striking perinuclear accumulation of the chemokine. HCMV infection significantly increased mRNA and total cell surface expression of the two known receptors for CXCL12: CXCR4 and CXCR7. Functionally, HCMV-infected SGHPL-4 cells were unable to migrate or invade in response to a gradient of soluble CXCL12 in transwell assays. Conclusions Collectively, these studies demonstrate that HCMV impairs EVT migration and invasion induced by CXCL12. As HCMV has the ability to inhibit EVT migration and invasion through dysregulation of other relevant signaling pathways, it is likely that the virus affects multiple signaling pathways to impair placentation and contribute to some of the placental defects seen in HCMV-positive pregnancies.
Collapse
Affiliation(s)
- Jessica A Warner
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
21
|
McGinn OJ, Marinov G, Sawan S, Stern PL. CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. J Cell Sci 2012; 125:5467-78. [PMID: 22956548 DOI: 10.1242/jcs.109488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CXCL12 is a pleiotropic chemokine capable of eliciting multiple signal transduction cascades and functions, via interaction with either CXCR4 or CXCR7. Factors that determine CXCL12 receptor preference, intracellular signalling route and biological response are poorly understood but are of central importance in the context of therapeutic intervention of the CXCL12 axis in multiple disease states. We have recently demonstrated that 5T4 oncofoetal glycoprotein facilitates functional CXCR4 expression leading to CXCL12 mediated chemotaxis in mouse embryonic cells. Using wild type (WT) and 5T4 knockout (5T4KO) murine embryonic fibroblasts (MEFs), we now show that CXCL12 binding to CXCR4 activates both the ERK and AKT pathways within minutes, but while these pathways are intact, they are non-functional in 5T4KO cells treated with CXCL12. Importantly, in the absence of 5T4 expression, CXCR7 is upregulated and becomes the predominant receptor for CXCL12, activating a distinct signal transduction pathway with slower kinetics involving transactivation of the epidermal growth factor receptor (EGFR), eliciting proliferation rather than chemotaxis. Thus the surface expression of 5T4 marks the use of the CXCR4 rather than the CXCR7 receptor, with distinct consequences for CXCL12 exposure, relevant to the spread and growth of a tumour. Consistent with this hypothesis, we have identified human small cell lung carcinoma cells with similar 5T4/CXCR7 reciprocity that is predictive of biological response to CXCL12 and determined that 5T4 expression is required for functional chemotaxis in these cells.
Collapse
Affiliation(s)
- Owen J McGinn
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|