1
|
Naydenov DD, Vashukova ES, Barbitoff YA, Nasykhova YA, Glotov AS. Current Status and Prospects of the Single-Cell Sequencing Technologies for Revealing the Pathogenesis of Pregnancy-Associated Disorders. Genes (Basel) 2023; 14:756. [PMID: 36981026 PMCID: PMC10048492 DOI: 10.3390/genes14030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a method that focuses on the analysis of gene expression profile in individual cells. This method has been successfully applied to answer the challenging questions of the pathogenesis of multifactorial diseases and open up new possibilities in the prognosis and prevention of reproductive diseases. In this article, we have reviewed the application of scRNA-seq to the analysis of the various cell types and their gene expression changes in normal pregnancy and pregnancy complications. The main principle, advantages, and limitations of single-cell technologies and data analysis methods are described. We discuss the possibilities of using the scRNA-seq method for solving the fundamental and applied tasks related to various pregnancy-associated disorders. Finally, we provide an overview of the scRNA-seq findings for the common pregnancy-associated conditions, such as hyperglycemia in pregnancy, recurrent pregnancy loss, preterm labor, polycystic ovary syndrome, and pre-eclampsia.
Collapse
Affiliation(s)
- Dmitry D. Naydenov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Elena S. Vashukova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yury A. Barbitoff
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yulia A. Nasykhova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Andrey S. Glotov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
3
|
Arthurs AL, Jankovic-Karasoulos T, Smith MD, Roberts CT. Circular RNAs in Pregnancy and the Placenta. Int J Mol Sci 2022; 23:ijms23094551. [PMID: 35562943 PMCID: PMC9100345 DOI: 10.3390/ijms23094551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.
Collapse
|
4
|
Qi D, Lu J, Fu Z, Lv S, Hou L. Psoralen Promotes Proliferation, Migration, and Invasion of Human Extravillous Trophoblast Derived HTR-8/Svneo Cells in vitro by NF-κB Pathway. Front Pharmacol 2022; 13:804400. [PMID: 35462898 PMCID: PMC9024043 DOI: 10.3389/fphar.2022.804400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a kind of pathological pregnancy, and abnormal function of trophoblast cells may be related to a variety of pregnancy complications including RSA. Psoralen is an effective ingredient extracted from Cullen corylifolium (L.) Medik. with multiple bioactivities mainly including anti-osteoporotic, anti-tumor, anti-inflammatory, and estrogen-like effects. However, the exact role of psoralen on trophoblast invasiveness has not been investigated thus far. In the present study, the effects of psoralen on the proliferation, migration, and invasion abilities of HTR-8/SVneo cells were evaluated by the CCK-8 and Transwell assays. The expression patterns of nuclear factor κB (NF-κB)/p65 and metalloproteinases (MMP)-2 and MMP-9 were characterized by further experiments including real-time quantitative polymerase chain reaction and Western blot. Indirect immunofluorescence was applied to track the NF-κB p65 translocation. Herein, we found that cell viability and invasive ability were promoted by psoralen in a concentration-dependent manner. Psoralen concentration-dependently enhanced both MMP-2 and MMP-9 expression and their activity of HTR-8/SVneo cells. Additionally, we observed accelerated nuclear accumulation and enhanced nuclear translocation of p65 in the presence of psoralen. Furthermore, invasiveness enhancement of psoralen on HTR-8/SVneo cells was partly eliminated by a NF-κB pathway inhibitor. Thus, our findings suggest that psoralen may serve as a potential repurpose drug candidate that can be used to induce migration and invasion of trophoblast cells through strengthening the NF-κB pathway.
Collapse
Affiliation(s)
- Dan Qi
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Lu
- Department of Radiological Intervention, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Lv
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Hou
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lili Hou,
| |
Collapse
|
5
|
Beer LA, Senapati S, Sammel MD, Barnhart KT, Schreiber CA, Speicher DW. Proteome-defined changes in cellular pathways for decidua and trophoblast tissues associated with location and viability of early-stage pregnancy. Reprod Biol Endocrinol 2022; 20:36. [PMID: 35189928 PMCID: PMC8862331 DOI: 10.1186/s12958-022-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In early pregnancy, differentiating between a normal intrauterine pregnancy (IUP) and abnormal gestations including early pregnancy loss (EPL) or ectopic pregnancy (EP) is a major clinical challenge when ultrasound is not yet diagnostic. Clinical treatments for these outcomes are drastically different making early, accurate diagnosis imperative. Hence, a greater understanding of the biological mechanisms involved in these early pregnancy complications could lead to new molecular diagnostics. METHODS Trophoblast and endometrial tissue was collected from consenting women having an IUP (n = 4), EPL (n = 4), or EP (n = 2). Samples were analyzed by LC-MS/MS followed by a label-free proteomics analysis in an exploratory study. For each tissue type, pairwise comparisons of different pregnancy outcomes (EPL vs. IUP and EP vs. IUP) were performed, and protein changes having a fold change ≥ 3 and a Student's t-test p-value ≤ 0.05 were defined as significant. Pathway and network classification tools were used to group significantly changing proteins based on their functional similarities. RESULTS A total of 4792 and 4757 proteins were identified in decidua and trophoblast proteomes. For decidua, 125 protein levels (2.6% of the proteome) were significantly different between EP and IUP, whereas EPL and IUP decidua were more similar with only 68 (1.4%) differences. For trophoblasts, there were 66 (1.4%) differences between EPL and IUP. However, the largest group of 344 differences (7.2%) was observed between EP and IUP trophoblasts. In both tissues, proteins associated with ECM remodeling, cell adhesion and metabolic pathways showed decreases in EP specimens compared with IUP and EPL. In trophoblasts, EP showed elevation of inflammatory and immune response pathways. CONCLUSIONS Overall, differences between an EP and IUP are greater than the changes observed when comparing ongoing IUP and nonviable intrauterine pregnancies (EPL) in both decidua and trophoblast proteomes. Furthermore, differences between EP and IUP were much higher in the trophoblast than in the decidua. This observation is true for the total number of protein changes as well as the extent of changes in upstream regulators and related pathways. This suggests that biomarkers and mechanisms of trophoblast function may be the best predictors of early pregnancy location and viability.
Collapse
Affiliation(s)
- Lynn A Beer
- Center for Systems & Computational Biology, The Wistar Institute, Philadelphia, PA, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D Sammel
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Kurt T Barnhart
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney A Schreiber
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Speicher
- Center for Systems & Computational Biology, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
7
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Santos BR, Barbosa EM, da Silva TQM, Corrêa JMX, Niella RV, Lavor MSL, da Silva EB, de Melo Ocarino N, Serakides R, Silva JF. Kisspeptin/Kiss1r system and angiogenic and immunological mediators at the maternal-fetal interface of domestic cats. Biol Reprod 2021; 105:217-231. [PMID: 33774655 DOI: 10.1093/biolre/ioab061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The Kisspeptin/Kiss1r system is a key regulator of reproduction by stimulating gonadotrophin-releasing hormone and luteinizing hormone release, and in vitro studies have shown that Kisspeptin can modulate angiogenesis and immune function, factors that are also essential for reproduction However, there are no studies on the expression of Kisspeptin/Kiss1r at the maternal-fetal interface in domestic cats and its relationship with angiogenic and immunological mediators. Thus, our objective was to evaluate the spatiotemporal expression profile of Kisspeptin/Kiss1r and angiogenic and immunological mediators in the uterus and placenta of domestic cats during pregnancy. Uterus and placenta samples were collected from cats in mid pregnancy (N = 6) and late pregnancy (N = 6), in addition to uterus from non-pregnant cats in diestrus (N = 7), to evaluate protein and gene expression of kisspeptin (Kiss1), kisspeptin receptor (Kiss1r), vascular endothelial growth factor (VEGF), tyrosine kinase receptor (Flk-1), placental growth factor (PLGF), interferon gamma (INFγ), migration inhibiting factor (MIF), tumor necrosis factor (TNFα), interleukins (IL6 and IL10) by immunohistochemistry and quantitative polymerase chain reaction. Pregnancy increased the uterine expression of Kiss1 and Kiss1r, especially at the late pregnancy, in addition to upregulating INFy, MIF, Vegf, Il10, and Tnf and downregulating Plgf. Higher placental expression of Kiss1r and Plgf mRNA occurred at the late pregnancy, while the expression of Kiss1, VEGF, Flk-1, INFy, TNFα, Il6, and IL10 was higher in the mid of pregnancy. A positive correlation between Kiss1 and Tnf was observed in the placenta, while Kiss1r had a negative correlation with Infγ, Il6, and Il10. The findings reveal that Kisspeptin/Kiss1r and angiogenic and immunological mediators at the maternal-fetal interface of pregnant cat have a gene correlation and are modulated by the gestational age. These data suggest possible functional links of Kisspeptin in placental angiogenesis and immunology.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raquel Viera Niella
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Natália de Melo Ocarino
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogéria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| |
Collapse
|
8
|
Wu Y, Li L, Liu L, Yang X, Yan P, Yang K, Zhang X. Autologous peripheral blood mononuclear cells intrauterine instillation to improve pregnancy outcomes after recurrent implantation failure: a systematic review and meta-analysis. Arch Gynecol Obstet 2019; 300:1445-1459. [DOI: 10.1007/s00404-019-05275-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023]
|
9
|
Intrauterine administration of autologous peripheral blood mononuclear cells in patients with recurrent implantation failure: A systematic review and meta-analysis. J Reprod Immunol 2019; 131:50-56. [DOI: 10.1016/j.jri.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/01/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
10
|
Moser G, Windsperger K, Pollheimer J, de Sousa Lopes SC, Huppertz B. Human trophoblast invasion: new and unexpected routes and functions. Histochem Cell Biol 2018; 150:361-370. [PMID: 30046889 PMCID: PMC6153604 DOI: 10.1007/s00418-018-1699-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
Until recently, trophoblast invasion during human placentation was characterized by and restricted to invasion into uterine connective tissues and the uterine spiral arteries. The latter was explained to connect the arteries to the intervillous space of the placenta and to guarantee the blood supply of the mother to the placenta. Today, this picture has dramatically changed. Invasion of endoglandular trophoblast into uterine glands, already starting at the time of implantation, enables histiotrophic nutrition of the embryo prior to perfusion of the placenta with maternal blood. This is followed by invasion of endovenous trophoblasts into uterine veins to guarantee the drainage of fluids from the placenta back into the maternal circulation throughout pregnancy. In addition, invasion of endolymphatic trophoblasts into the lymph vessels of the uterus has been described. Only then, invasion of endoarterial trophoblasts into spiral arteries takes place, enabling hemotrophic nutrition of the fetus starting with the second trimester of pregnancy. This new knowledge paves the way to identify changes that may occur in pathological pregnancies, from tubal pregnancies to recurrent spontaneous abortions.
Collapse
Affiliation(s)
- Gerit Moser
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/II, 8010, Graz, Austria
| | - Karin Windsperger
- Division of Obstetrics and Feto-maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.,Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susana Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/II, 8010, Graz, Austria.
| |
Collapse
|
11
|
Silva JF, Ocarino NM, Serakides R. Spatiotemporal expression profile of proteases and immunological, angiogenic, hormonal and apoptotic mediators in rat placenta before and during intrauterine trophoblast migration. Reprod Fertil Dev 2018; 29:1774-1786. [PMID: 27737730 DOI: 10.1071/rd16280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
The gene and/or protein expression of proteases and immunological, angiogenic, hormonal and apoptotic mediators was evaluated in rat placenta before and during intrauterine trophoblast migration. The depth of interstitial and endovascular intrauterine trophoblast invasion and the immunohistochemical expression of vascular endothelial growth factor (VEGF), fetal liver kinase 1 (Flk1), interferon (IFN)-γ, migration inhibitory factor (MIF), and inducible nitric oxide synthase (iNOS; also known as nitric oxide synthase (NOS) 2) were evaluated. In addition, the expression of the Vegf, Flk1, placental growth factor (Pigf), soluble fms-like tyrosine kinase 1 (sFlt1), placental lactogen 1 (Pl1), proliferin-related protein (rPlf), placental leptin (Lep), Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), Infg, Mif, tumour necrosis factor-α (Tnf), interleukin-10 (Il10), Nos2, caspase 3 (Casp3), Bax, Bcl2, matrix metalloproteinase 2 (Mmp2) and matrix metalloproteinase 9 (Mmp9) genes was determined by real-time reverse transcription-polymerase chain reaction. At 10 days gestation, gene expression of Tlr2, Tlr4, Tnf, Infg, Il10, Casp3, Pigf, sFlt1 and Lep (P<0.05) were higher than at 14 and/or 19 days of gestation. The beginning of intrauterine trophoblast invasion, i.e., at 14 days of gestation, coincided with higher gene and/or protein expression of MMP9, VEGF, Flk1, NOS2, MIF, BAX and rPlf compared to days 10 and 19 (P<0.05). In contrast, gene expression of Mmp2 and Pl1 was higher at the end of trophoblast invasion compared to 10 and 14 days of gestation (P<0.05). In conclusion, before intrauterine trophoblast migration, expression of TLRs and immunological and pro-apoptotic mediators is higher, whereas the beginning of trophoblast migration is characterised by higher expression of the pro-angiogenic factors NOS2 and MMP9. In contrast, MMP2 and PL1 expression is higher at the end of intrauterine trophoblast migration.
Collapse
Affiliation(s)
- Juneo F Silva
- Laboratório de Histologia Animal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, 45662-900, Ilhéus, Bahia, Brazil
| | - Natália M Ocarino
- Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha, Avenida Antônio Carlos, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha, Avenida Antônio Carlos, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Li S, Wang J, Cheng Y, Zhou D, Yin T, Xu W, Yu N, Yang J. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J Reprod Immunol 2017; 119:15-22. [DOI: 10.1016/j.jri.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/20/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
|
13
|
Namdar Ahmadabad H, Kayvan Jafari S, Nezafat Firizi M, Abbaspour AR, Ghafoori Gharib F, Ghobadi Y, Gholizadeh S. Pregnancy outcomes following the administration of high doses of dexamethasone in early pregnancy. Clin Exp Reprod Med 2016; 43:15-25. [PMID: 27104153 PMCID: PMC4838577 DOI: 10.5653/cerm.2016.43.1.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/15/2016] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE In the present study, we aimed to evaluate the effects of high doses of dexamethasone (DEX) in early pregnancy on pregnancy outcomes. METHODS Pregnant BALB/c mice were treated with high-dose DEX in the experimental group or saline in the control group on gestational days (GDs) 0.5 to 4.5. Pregnant mice were sacrificed on GDs 7.5, 13.5, or 18.5 and their peripheral blood, placentas, fetuses, and uterine tissue were collected. Decidual and placenta cell supernatants were examined to evaluate the effect of DEX on the proliferation of mononuclear cells, the quantity of uterine macrophages and uterine natural killer (uNK) cells, and levels of progesterone and 17β-estradiol, as determined by an 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We also were measured fetal and placental growth parameters on GD 18.5. RESULTS We found that high doses of DEX were associated with an increased abortion rate, enhancement of the immunosuppressive effect of the decidua, alterations in placental growth parameters, decreased progesterone and 17β-estradiol levels, and a reduced frequency of macrophages and uNK cells. CONCLUSION Our data suggest that the high-dose administration of DEX during early pregnancy negatively affected pregnancy outcomes.
Collapse
Affiliation(s)
- Hasan Namdar Ahmadabad
- Department of Pathobiology and Medical Laboratory Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Maryam Nezafat Firizi
- Department of Pathobiology and Medical Laboratory Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Ali Reza Abbaspour
- Department of Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Fahime Ghafoori Gharib
- Department of Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Yusef Ghobadi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Samira Gholizadeh
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Silva JF, Serakides R. Intrauterine trophoblast migration: A comparative view of humans and rodents. Cell Adh Migr 2016; 10:88-110. [PMID: 26743330 DOI: 10.1080/19336918.2015.1120397] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juneo F Silva
- a Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Rogéria Serakides
- b Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
15
|
Chisanga C, Eggert D, Mitchell CD, Wood C, Angeletti PC. Evidence for Placental HPV Infection in Both HIV Positive and Negative Women. ACTA ACUST UNITED AC 2015; 6:1276-1289. [PMID: 26865986 PMCID: PMC4746014 DOI: 10.4236/jct.2015.615140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human papillomaviruses (HPVs) have previously been reported to infect epithelial trophoblast cells of the placenta. To investigate this possibility, 200 placental samples from Zambian women were separated into HIV+ and HIV− groups and tested for HPV by redundant primer PCR, using GP5+/GP6+ and CPI/CPII primer sets. Three HPV genotypes (HPV6, 16 and 90) were detected in placental samples. Whereas, 20 different HPV genotypes were detected in vaginal sampling of the same patients, suggesting that compartment specific sub-populations of HPV may exist. The incidence of HPV16 in placental samples was almost 2-fold greater in HIV+ women compared to HIV− (p = 0.0241). HPV16 L1 expression, detected by immunochemistry, was significantly higher in HIV+ than HIV− samples (p = 0.0231). HPV16 DNA was detected in the nuclei of trophoblast cells by in situ hybridization. Overall, these results suggest that HPVs infect the placenta and that HIV significantly influences these infections.
Collapse
Affiliation(s)
- Chrispin Chisanga
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dawn Eggert
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peter C Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Li P, Peng H, Lu WH, Shuai HL, Zha QB, Yeung CK, Li H, Wang LJ, Ho Lee KK, Zhu WJ, Yang X. Role of Slit2/Robo1 in trophoblast invasion and vascular remodeling during ectopic tubal pregnancy. Placenta 2015; 36:1087-94. [PMID: 26282852 DOI: 10.1016/j.placenta.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 02/03/2023]
Abstract
INTRODUCTION For ectopic tubal pregnancy to be viable, it requires a supporting vascular network and functioning trophoblast. Slit2/Robo1 signaling plays an important role in placental angiogenesis during normal pregnancy. Hence, we here investigated whether or not Slit2/Robo1 signaling also had an impact in ectopic tubal pregnancy. METHODS The Slit2 and Robo1 expression pattern relevant to trophoblast invasive behavior and vascular remodeling was studied in human tubal placenta obtained from patients with ectopic pregnancy (5-8weeks gestation), The trophoblast development, vascular architecture and Robo1 expression pattern were observed in Slit2 overexpression (Slit2-Tg) and C57BL mice placenta (E13.5 and E15.5). RESULTS Marked with CK-7 and Vimentin, the vessel profiles of fallopian tube were classified into four stages. In the presence of extravillous trophoblast (EVT), stellate-shaped and polygonal-shaped EVTs were observed, and the stellate-shaped EVT showed the higher Slit2 expression (P < 0.01) but lower Robo1 expression (P < 0.05) than polygonal-shaped cells. By contrast, a temporary Slit2 up-regulation in remodeling vessel and Slit2 down-regulation in remodeled vessel of polygonal-shape extravillous trophoblast cells occurred in tubal pregnancies. In Slit2-Tg mice E13.5 and E15.5 placenta, Slit2 overexpression promoted vascular remodeling by increasing in the diameter of the maternal blood sinusoids and fetal capillaries, but enhanced the thickness of trophoblast and vasculature at E15.5 Slit2-Tg mice. CONCLUSIONS The varying Slit2 and Robo1 expression in EVTs was associated with trophoblast invasion and probably plays an important role in the events of blood vessel remodeling of the fallopian tube tissues.
Collapse
Affiliation(s)
- Ping Li
- Department of Nursing Science, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hui Peng
- Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou 510120, China
| | - Wen-Hui Lu
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Han-Lin Shuai
- Department of Gynecology & Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qing-Bin Zha
- Department of Gynecology & Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Cheung-Kwan Yeung
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China; Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - He Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li-Jing Wang
- Institute of Vascular Biological Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei-Jie Zhu
- Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Yu N, Yan W, Yin T, Wang Y, Guo Y, Zhou D, Xu M, Ding J, Yang J. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion. PLoS One 2015; 10:e0125589. [PMID: 26087261 PMCID: PMC4472760 DOI: 10.1371/journal.pone.0125589] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.
Collapse
Affiliation(s)
- Nan Yu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wenjie Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yue Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Danni Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Mei Xu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensébé L, Deschaseaux F. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2014; 31:2296-303. [PMID: 23922260 DOI: 10.1002/stem.1494] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022]
Abstract
Both human leukocyte antigen G (HLA-G) and multipotential mesenchymal stem/stromal cells (MSCs) exhibit immunomodulatory functions. In allogeneic tranplantation, the risks of acute and chronic rejection are still high despite improvement in immunosuppressive treatments, and the induction of a state of tolerance to alloantigens is not achieved. Immunomodulatory properties of MSCs and HLA-G in human allogeneic tranplantation to induce tolerance appears attractive and promising. Interestingly, we and others have demonstrated that MSCs can express HLA-G. In this review, we focus on the expression of HLA-G by MSCs and discuss how to ensure and improve the immunomodulatory properties of MSCs by selectively targeting MSCs expressing HLA-G (MSCs(HLA-G+)). We also discuss the possible uses of MSCs(HLA-G+) for therapeutic purposes, notably, to overcome acute and chronic immune rejection in solid-organ allogeneic transplantation in humans. Since MSCs are phenotypically and functionally heterogeneous, it is of primary interest to have specific markers ensuring that they have strong immunosuppressive potential and HLA-G may be a valuable candidate.
Collapse
Affiliation(s)
- Abderrahim Naji
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Sotnikova N, Voronin D, Antsiferova Y, Bukina E. Interaction of Decidual CD56+ NK with Trophoblast Cells during Normal Pregnancy and Recurrent Spontaneous Abortion at Early Term of Gestation. Scand J Immunol 2014; 80:198-208. [DOI: 10.1111/sji.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022]
Affiliation(s)
- N. Sotnikova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - D. Voronin
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - Y. Antsiferova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - E. Bukina
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| |
Collapse
|
21
|
Silva JF, Ocarino NM, Serakides R. Maternal thyroid dysfunction affects placental profile of inflammatory mediators and the intrauterine trophoblast migration kinetics. Reproduction 2014; 147:803-16. [PMID: 24534949 DOI: 10.1530/rep-13-0374] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The objective of the present study was to evaluate the gene and immunohistochemical expression of inflammatory mediators involved in the immune activity and the intrauterine trophoblast migration of the placentas in hypothyroid and L-thyroxine (L-T4)-treated rats. A total of 144 adult female rats were divided equally into hypothyroid, l-T4-treated, and euthyroid (control) groups. Hypothyroidism was induced by daily administration of propylthiouracil. Rats were killed at 0, 10, 14, 15, 16, 17, 18, and 19 days of gestation. We evaluated the depth of interstitial and endovascular intrauterine trophoblast invasion and the immunohistochemical expression of interferon γ (INFy), migration inhibitory factor (MIF), and inducible nitric oxide synthase (NOS2 (iNOS)). The gene expression of Toll-like receptor 2 (Tlr2) and Tlr4, Infy, Mif, tumor necrosis factor (Tnf (Tnfα)), Il10, Nos2, matrix metalloproteinase 2 (Mmp2) and Mmp9, and placental leptin was also measured in placental disks by real-time RT-PCR. The data were analyzed using an Student-Newman-Keuls (SNK) test. Hypothyroidism reduced the endovascular and interstitial trophoblast migration, and the expression of TLR4, INFy, MIF, interleukin 10 (IL10), NOS2, MMP2 and MMP9, and placental leptin, while increased the expression of TLR2 (P<0.05). T4-treated rats not only increased the expression of IL10 and NOS2 but also reduced the expression of TNF and MIF at 10 days of gestation (P<0.05). However, at 19 days of gestation, expression of INFy and MIF was increased in T4-treated group (P<0.05). Excess of T4 also increased the gene expression of Mmp2 at 10 days of gestation (P<0.05), but reduced the endovascular trophoblast migration at 18 days of gestation (P<0.05). Hypothyroidism and excess of T4 differentially affect the immune profile and the intrauterine trophoblast migration of the placenta, and these effects are dependent on the gestational period.
Collapse
Affiliation(s)
- Juneo Freitas Silva
- Departamento de Clínica e Cirurgia VeterináriaEscola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália Melo Ocarino
- Departamento de Clínica e Cirurgia VeterináriaEscola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Clínica e Cirurgia VeterináriaEscola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|