1
|
Bavarsad SB, Shahryarhesami S, Karami N, Naseri N, Tajbakhsh A, Gheibihayat SM. Efferocytosis and infertility: Implications for diagnosis and therapy. J Reprod Immunol 2024; 167:104413. [PMID: 39631138 DOI: 10.1016/j.jri.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Recent research has shed light on the intricate connection between efferocytosis and infertility, revealing its dysregulation as a contributing factor in various reproductive diseases. Despite the multifaceted nature of infertility etiology, the impact of insufficient clearance of apoptotic cells on fertility has emerged as a focal point. Notably, the removal of apoptotic cells through phagocytosis in the female reproductive system has been a subject of extensive investigation in the field of infertility. Additionally, special functions performed by immune system cell types, such as macrophages and Sertoli cells, in the male reproductive system underscore their significance in spermatogenesis and the efferocytosis of apoptotic germ cells. Dysregulation of efferocytosis emerges as a critical factor contributing to reproductive challenges, such as low pregnancy rates, miscarriages, and implantation failures. Moreover, defective efferocytosis can lead to compromised implantation, recurrent miscarriages, and unsuccessful assisted reproductive procedures. This review article aims to provide a comprehensive overview of efferocytosis in the context of infertility. Molecular mechanisms underlying efferocytosis, its relevance in both female and male infertility, and its implications in various reproductive diseases are elucidated. The elucidation of the intricate relationship between efferocytosis and infertility not only facilitates diagnosis but also paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| | - Noorodin Karami
- Genetics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Wei M, Liu H, Wang Y, Sun M, Shang P. Mechanisms of Male Reproductive Sterility Triggered by Dysbiosis of Intestinal Microorganisms. Life (Basel) 2024; 14:694. [PMID: 38929676 PMCID: PMC11204708 DOI: 10.3390/life14060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut-brain-reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut-brain-reproductive axis, concluding with recommendations for prevention and treatment.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Huaizhi Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mingyang Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| |
Collapse
|
3
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
4
|
Routy JP, Dupuy FP, Lin J, Isnard S. More than a Gender Issue: Testis as a Distinctive HIV Reservoir and Its Implication for Viral Eradication. Methods Mol Biol 2022; 2407:173-186. [PMID: 34985665 DOI: 10.1007/978-1-0716-1871-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Early establishment of HIV reservoir represents the main impediment to an HIV cure. Mainly composed of infected memory CD4 T-cells and macrophages, HIV reservoirs are found in several organs including lymph nodes, gut, and testes. In men, and as seen in brain and eyes, testes represent a distinctive organ characterized by an immune privilege, allowing the tolerance of spermatozoa which only develop after puberty, long after the establishment of systemic immunity. The immune privilege of testes relies on a strict testis-blood barrier, and a local immunosuppressive environment. Testes has been described as reservoir for several viruses including Ebola, Zika, and HIV. Indeed, HIV reservoirs were detected in tested viremic and virally suppressed donor taking antiretroviral therapy (ART). Herein, we discuss the distinctive environment found in human testes and describe a validated method allowing the characterization and quantification of HIV-infected CD4 T-cells in human testes. Using mechanical and enzymatic treatment, cells can be extracted from human testis samples. Characterization of those cells can be performed by flow cytometry and HIV reservoir quantification performed by nested qPCR after flow cytometry sorting.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
| |
Collapse
|
5
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
6
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
7
|
Andrews AR, Kakadekar A, Schmidt RL, Murugan P, Greene DN. Histologic Findings in Surgical Pathology Specimens From Individuals Taking Feminizing Hormone Therapy for the Purpose of Gender Transition: A Systematic Scoping Review. Arch Pathol Lab Med 2021; 146:252-261. [PMID: 33983412 DOI: 10.5858/arpa.2020-0704-ra] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Transgender women experience health disparities in all areas of medicine. Within surgical pathology, knowledge gaps relating to the concepts of transgender care exist. Medical transition for transgender women and transfeminine persons may involve hormone therapy and/or surgery to feminize the body. Understanding the common histologic changes in specimens from feminizing surgeries, as well as other specimens from patients on feminizing hormone therapy, will aid surgical pathologists in providing better care to this unique patient population. OBJECTIVE.— To summarize histologic findings in surgical pathology specimens from transgender women taking feminizing hormones. DATA SOURCES.— A systematic review of the OVID Medline and PubMed databases was performed to identify all studies describing histologic findings in surgical pathology specimens from transgender women from 1946 to 2019. CONCLUSIONS.— Much of the literature to date describing histologic findings in transgender women comes from the examination of genitourinary specimens removed during feminizing surgeries. Common benign changes associated with feminizing hormone therapy include the development of acini and lobules in the breast, testicular tubular changes, and squamous metaplasia of the prostate and urethra. Neoplastic cases include breast adenocarcinoma and fibroepithelial lesions, testicular germ cell tumors, prostatic adenocarcinoma, anal squamous cell carcinoma, pituitary adenomas, and meningiomas. Additional studies assessing the findings in other organ systems as well as population-based studies assessing rates of neoplasia are needed. However, future research relies on engagement within the surgical pathology community as well as collaboration with clinicians and patients to achieve optimal results.
Collapse
Affiliation(s)
- Alicia R Andrews
- From the Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada (Andrews, Kakadekar)
| | - Archan Kakadekar
- From the Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada (Andrews, Kakadekar)
| | - Robert L Schmidt
- the Department of Pathology, University of Utah, Salt Lake City (Schmidt)
| | - Paari Murugan
- the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Murugan)
| | - Dina N Greene
- the Department of Laboratory Medicine, University of Washington, Seattle (Greene)
| |
Collapse
|
8
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
9
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
10
|
Drug efflux transporters and metabolic enzymes in human circulating and testicular T-cell subsets: relevance to HIV pharmacotherapy. AIDS 2020; 34:1439-1449. [PMID: 32310902 DOI: 10.1097/qad.0000000000002548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES ATP-binding cassette (ABC) drug efflux transporters and drug metabolic enzymes could reduce antiretroviral concentrations in HIV target cells. The testis has been demonstrated to be a sanctuary site, displaying suboptimal antiretroviral concentrations and persistent HIV infection. Therefore, we compared the expression and function of ABC transporters and metabolic enzymes in CD4 and CD8 T cells isolated from human testis and peripheral blood mononuclear cells (PBMCs), and assessed their expression in circulating naive and memory CD4 T-cell phenotypes. DESIGN Testicular tissue and blood were collected from 15 uninfected donors undergoing gender affirmation surgery. Testicular interstitial cells were isolated by enzymatic digestion, whereas PBMCs were isolated from blood by density gradient centrifugation. The expression and/or function of ABC transporters and metabolic enzymes were examined in blood and testicular T-cell subsets by flow cytometry. RESULTS ABC transporters (P-gp, BCRP, MRP1) and metabolic enzymes (CYP3A4, UGT1A1) were expressed in testicular and circulating CD4 and CD8 T cells, as well as in circulating naive, central, transitional, and effector memory T-cell phenotypes. MRP1 demonstrated lower frequencies in T cells from testis compared with PBMCs, as well as in circulating naive T cells compared with the memory T-cell phenotypes. Functional activity of P-gp and BCRP was detected in T-cell subsets from testis and PBMCs. CONCLUSION Our findings demonstrate for the first time that antiretroviral drug efflux transporters and metabolic enzymes are functionally expressed in T-cell subsets infiltrating the human testis. These transporters and enzymes can reduce antiretroviral intracellular concentrations, potentially contributing to residual HIV replication in the testis, and negatively impact HIV cure strategies.
Collapse
|
11
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
12
|
HIV Diversity and Genetic Compartmentalization in Blood and Testes during Suppressive Antiretroviral Therapy. J Virol 2019; 93:JVI.00755-19. [PMID: 31189714 DOI: 10.1128/jvi.00755-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/08/2019] [Indexed: 12/27/2022] Open
Abstract
HIV's ability to persist during suppressive antiretroviral therapy is the main barrier to cure. Immune-privileged tissues, such as the testes, may constitute distinctive sites of HIV persistence, but this has been challenging to study in humans. We analyzed the proviral burden and genetics in the blood and testes of 10 individuals on suppressive therapy who underwent elective gender-affirming surgery. HIV DNA levels in matched blood and testes were quantified by quantitative PCR, and subgenomic proviral sequences (nef region) were characterized from single templates. HIV diversity, compartmentalization, and immune escape burden were assessed using genetic and phylogenetic approaches. Diverse proviruses were recovered from the blood (396 sequences; 354 nef-intact sequences) and testes (326 sequences; 309 nef-intact sequences) of all participants. Notably, the frequency of identical HIV sequences varied markedly between and within individuals. Nevertheless, proviral loads, within-host unique HIV sequence diversity, and the immune escape burden correlated positively between blood and testes. When all intact nef sequences were evaluated, 60% of participants exhibited significant blood-testis genetic compartmentalization, but none did so when the evaluation was restricted to unique sequences per site, suggesting that compartmentalization, when present, is attributable to the clonal expansion of HIV-infected cells. Our observations confirm the testes as a site of HIV persistence and suggest that individuals with larger and more diverse blood reservoirs will have larger and more diverse testis reservoirs. Furthermore, while the testis microenvironment may not be sufficiently unique to facilitate the seeding of unique viral populations therein, differential clonal expansion dynamics may be at play, which may complicate HIV eradication.IMPORTANCE Two key questions in HIV reservoir biology are whether immune-privileged tissues, such as the testes, harbor distinctive proviral populations during suppressive therapy and, if so, by what mechanism. While our results indicated that blood-testis HIV genetic compartmentalization was reasonably common (60%), it was always attributable to differential frequencies of identical HIV sequences between sites. No blood-tissue data set retained evidence of compartmentalization when only unique HIV sequences per site were considered; moreover, HIV immune escape mutation burdens were highly concordant between sites. We conclude that the principal mechanism by which blood and testis reservoirs differ is not via seeding of divergent HIV sequences therein but, rather, via differential clonal expansion of latently infected cells. Thus, while viral diversity and escape-related barriers to HIV eradication are of a broadly similar magnitude across the blood and testes, clonal expansion represents a challenge. The results support individualized analysis of within-host reservoir diversity to inform curative approaches.
Collapse
|
13
|
Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 2019; 104:757-766. [PMID: 30265772 DOI: 10.1002/jlb.3mr0318-086rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sudhanshu Bhushan
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
14
|
Matoso A, Khandakar B, Yuan S, Wu T, Wang LJ, Lombardo KA, Mangray S, Mannan AASR, Yakirevich E. Spectrum of findings in orchiectomy specimens of persons undergoing gender confirmation surgery. Hum Pathol 2018; 76:91-99. [DOI: 10.1016/j.humpath.2018.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
|
15
|
Testicular macrophages: Guardians of fertility. Cell Immunol 2018; 330:120-125. [PMID: 29650243 DOI: 10.1016/j.cellimm.2018.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022]
Abstract
Macrophages are innate immune cells present in essentially every organ of the body with dedicated tissue specific functions. We will present in this review the unique properties and functions of macrophage populations residing in the testis, an immune-privileged organ. Testicular macrophages (tMΦ) could be seen as guardians of fertility due to their immunosuppressive functions protecting spermatogenesis from auto immune-attack. They exhibit testis specific functions with essential roles in normal testis homeostasis and fetal testicular development. Recently, two distinct testicular macrophage populations have been characterized based on different localization, morphology, gene expression profiles, developmental origin and postnatal development. We will discuss the importance of these two testicular macrophage populations for organ specific functions such as testosterone production and spermatogenesis, as well as their role in establishing immuno-privilege highlighting the contributions of macrophages to male fertility.
Collapse
|
16
|
|