1
|
Jennings BS, Hewison M. Vitamin D and Endometriosis: Is There a Mechanistic Link? Cell Biochem Funct 2025; 43:e70037. [PMID: 39739404 DOI: 10.1002/cbf.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Endometriosis is a prevalent chronic gynaecological disorder, but its cause is still unclear, and both genetic and environmental factors may contribute disease aetiology. Prominent amongst the latter is vitamin D which can be obtained either by the action of sunlight on skin or from dietary sources. Serum levels of the main circulating form of vitamin D, 25-hydroxvitamin D (25(OH)D), have been reported to be inversely correlated with endometriosis, suggesting that vitamin D-deficiency may be a risk factor for the disease. Crucially, the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) is known to exert many functions beyond its established role in the endocrinology of mineral homoeostasis and prevention of rickets. Several of these extra-skeletal effects of 1,25(OH)2D may impact the risk and progression of endometriosis. The following review details the studies that have assessed associations between vitamin D status/supplementation and endometriosis severity and disease progression, but also describes the mechanistic targets for 1,25(OH)2D in endometriosis with specific reference to immunomodulatory responses and effects on angiogenesis. Endometriosis is an under-reported health issue with poor non-invasive options for diagnosis. Given that vitamin D-deficiency may trigger or exacerbate key pathophysiological responses linked to endometriosis, analysis of vitamin D status in women may provide an alternative risk marker for endometriosis. Treatment options for endometriosis are also limited and the review will also consider whether vitamin D supplementation has a role in the management of endometriosis, either in prevention or treatment.
Collapse
Affiliation(s)
- Bethany Scout Jennings
- Department of Metabolism and Systems Science, School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Department of Metabolism and Systems Science, School of Medical Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
2
|
Sherwani S, Khan MWA, Rajendrasozhan S, Al-Motair K, Husain Q, Khan WA. The vicious cycle of chronic endometriosis and depression-an immunological and physiological perspective. Front Med (Lausanne) 2024; 11:1425691. [PMID: 39309679 PMCID: PMC11412830 DOI: 10.3389/fmed.2024.1425691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Endometriosis is a chronic, estrogen-dependent, proinflammatory disease that can cause various dysfunctions. The main clinical manifestations of endometriosis include chronic pelvic pain and impaired fertility. The disease is characterized by a spectrum of dysfunctions spanning hormonal signaling, inflammation, immune dysregulation, angiogenesis, neurogenic inflammation, epigenetic alterations, and tissue remodeling. Dysregulated hormonal signaling, particularly involving estrogen and progesterone, drives abnormal growth and survival of endometrial-like tissue outside the uterus. Chronic inflammation, marked by immune cell infiltration and inflammatory mediator secretion, perpetuates tissue damage and pain. Altered immune function, impaired ectopic tissue clearance, and dysregulated cytokine production contribute to immune dysregulation. Enhanced angiogenesis promotes lesion growth and survival. Epigenetic modifications influence gene expression patterns, e.g., HSD11B1 gene, affecting disease pathogenesis. Endometriosis related changes and infertility lead to depression in diagnosed women. Depression changes lifestyle and induces physiological and immunological changes. A higher rate of depression and anxiety has been reported in women diagnosed with endometriosis, unleashing physiological, clinical and immune imbalances which further accelerate chronic endometriosis or vice versa. Thus, both endometriosis and depression are concomitantly part of a vicious cycle that enhance disease complications. A multidimensional treatment strategy is needed which can cater for both endometrial disease and depression and anxiety disorders.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Saravanan Rajendrasozhan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Khalid Al-Motair
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Zhao X, Zhao Y, Zhang Y, Fan Q, Ke H, Chen X, Jin L, Tang H, Jiang Y, Ma J. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. J Biol Eng 2024; 18:42. [PMID: 39061076 PMCID: PMC11282767 DOI: 10.1186/s13036-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. RESULTS Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. CONCLUSION This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingnan Fan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanxiao Ke
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linxi Jin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongying Tang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Fang X, Deng Q, Yang H, Yan Z, Peng Z, Zhao Y, Liao T, Tu Z, Liu J, Liu L, Zou L, He H. Causal association of immune cells and endometriosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1397670. [PMID: 38868746 PMCID: PMC11167632 DOI: 10.3389/fendo.2024.1397670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
Objective To investigate the causal effect of immune cells on endometriosis (EMS), we performed a Mendelian randomization analysis. Methods Mendelian randomization (MR) uses genetic variants as instrumental variables to investigate the causal effects of exposures on outcomes in observational data. In this study, we conducted a thorough two-sample MR analysis to investigate the causal relationship between 731 immune cells and endometriosis. We used complementary Mendelian randomization (MR) methods, including weighted median estimator (WME) and inverse variance weighted (IVW), and performed sensitivity analyses to assess the robustness of our results. Results Four immune phenotypes have been found to be significantly associated with the risk of developing EMS: B cell %lymphocyte (WME: OR: 1.074, p = 0.027 and IVW: OR: 1.058, p = 0.008), CD14 on Mo MDSC (WME: OR: 1.056, p =0.021 and IVW: OR: 1.047, p = 0.021), CD14+ CD16- monocyte %monocyte (WME: OR: 0.947, p = 0.024 and IVW: OR: 0.958, p = 0.011), CD25 on unsw mem (WME: OR: 1.055, p = 0.030 and IVW: OR: 1.048, p = 0.003). Sensitivity analyses confirmed the main findings, demonstrating consistency across analyses. Conclusions Our MR analysis provides compelling evidence for a direct causal link between immune cells and EMS, thereby advancing our understanding of the disease. It also provides new avenues and opportunities for the development of immunomodulatory therapeutic strategies in the future.
Collapse
Affiliation(s)
- Xingyi Fang
- Reproductive Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qinghua Deng
- Department of Gynaecology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haili Yang
- Reproductive Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhaohua Yan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhen Peng
- Reproductive Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuheng Zhao
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tantan Liao
- Reproductive Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ziying Tu
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jia Liu
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Liu
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Zou
- Reproductive Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Honghua He
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Li R, Tran DN, Lessey BA, Young SL, Kim TH, Jeong JW. Transcriptomic changes in eutopic endometrium and ectopic lesions during endometriosis progression in a mouse model. F&S SCIENCE 2024; 5:182-194. [PMID: 38342342 PMCID: PMC11116064 DOI: 10.1016/j.xfss.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To identify the transcriptomic changes of ectopic lesions and eutopic endometrial tissues during the progression of endometriosis, we performed transcriptomic analysis in the eutopic endometrium and ectopic lesions. DESIGN Laboratory study. SETTING Academic medical center. ANIMALS Four fertile and 4 subfertile Pgrcre/+Rosa26mTmG/+ mice with endometriosis, and 4 sham mice for each group of endometriosis mice as control. These mice underwent either surgery to induce endometriosis or sham surgery. Fertile sham and mice with endometriosis were used 1 month after surgery, whereas subfertile ones were used 3 months after surgery. INTERVENTIONS Early and chronic effects of endometriosis on transcriptomics of ectopic lesions and eutopic endometrium. MAIN OUTCOME MEASURES RNA-sequencing analysis and identification of differentially expressed genes and pathways in the ectopic lesions and eutopic uteri from mice with endometriosis and sham mice at day 3.5 of pregnancy. RESULTS Our mouse model recapitulates the transcriptomic changes of ectopic lesions in humans. RNA-sequencing analysis was performed in ectopic lesions and eutopic uteri from mice with or without endometriosis during the progression of the disease. Estrogen activity, inflammation, angiogenesis, and fibrosis pathways were consistently elevated in all the ectopic lesions compared with eutopic endometrium. Cholesterol/glucose synthesis and stem cell pluripotency pathways were more enhanced in ectopic lesions from subfertile mice compared with their eutopic endometrium. Dysregulation of infiltration of macrophage, dendritic, T and B cells was validated with the use of immunohistochemistry in ectopic lesions. Multiple ligand-receptor pairs between the ectopic and eutopic endometrium were altered compared with the sham endometrium. Suppressed WNT and EGF pathways were only found in the eutopic endometrium from subfertile not fertile mice compared with sham. CONCLUSIONS Our mouse endometriosis model recapitulates the transcriptomics of ectopic lesions in humans. Our transcriptomic analysis during endometriosis progression in our mouse model will help us understand the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Rong Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Steven L Young
- Department of Obstetrics, Gynecology and Women's Health, Duke University, Durham, North Carolina
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri.
| |
Collapse
|
6
|
Liang Q, Yang S, Mai M, Chen X, Zhu X. Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study. J Assist Reprod Genet 2024; 41:1433-1447. [PMID: 38456992 PMCID: PMC11143086 DOI: 10.1007/s10815-024-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Qiuyi Liang
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Shengmei Yang
- Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiyi Mai
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiurong Chen
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
7
|
Ye Z, Deng X, Zhang J, Shao R, Song C, Zhao J, Tang H. Causal relationship between immune cells and prostate cancer: a Mendelian randomization study. Front Cell Dev Biol 2024; 12:1381920. [PMID: 38566827 PMCID: PMC10985200 DOI: 10.3389/fcell.2024.1381920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Despite the abundance of research indicating the participation of immune cells in prostate cancer development, establishing a definitive cause-and-effect relationship has proven to be a difficult undertaking. Methods This study employs Mendelian randomization (MR), leveraging genetic variables related to immune cells from publicly available genome-wide association studies (GWAS), to investigate this association. The primary analytical method used in this study is inverse variance weighting (IVW) analysis. Comprehensive sensitivity analyses were conducted to assess the heterogeneity and horizontal pleiotropy of the results. Results The study identifies four immune cell traits as causally contributing to prostate cancer risk, including CD127- CD8+ T cell %CD8+ T cell (OR = 1.0042, 95%CI:1.0011-1.0073, p = 0.0077), CD45RA on CD39+ resting CD4 regulatory T cell (OR = 1.0029, 95%CI:1.0008-1.0050, p = 0.0065), CD62L- Dendritic Cell Absolute Count (OR = 1.0016; 95%CI:1.0005-1.0026; p = 0.0039), CX3CR1 on CD14+ CD16- monocyte (OR = 1.0024, 95%CI:1.0007-1.0040, p = 0.0060). Additionally, two immune cell traits are identified as causally protective factors: CD4 on monocyte (OR = 0.9975, 95%CI:0.9958-0.9992, p = 0.0047), FSC-A on plasmacytoid Dendritic Cell (OR = 0.9983, 95%CI:0.9970-0.9995, p = 0.0070). Sensitivity analyses indicated no horizontal pleiotropy. Discussion Our MR study provide evidence for a causal relationship between immune cells and prostate cancer, holding implications for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhipeng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ruonan Shao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianfu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Pais AS, Almeida-Santos T. Recent insights explaining susceptibility to endometriosis-From genetics to environment. WIREs Mech Dis 2023; 15:e1624. [PMID: 37533299 DOI: 10.1002/wsbm.1624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
Endometriosis is a disease with a heterogeneous pathogenesis, explained by multiple theories, and also with a polymorphic presentation. The purpose of this literature review is to systematize the genetic, inflammatory, and environmental factors related to the pathophysiology of endometriosis. Current evidence suggests that endometriosis is a complex inherited genetic condition, in which the genes that determine susceptibility to the disease interact with the environment to develop different phenotypes. Genetic variants associated with risk of endometriosis have been identified in several genome-wide association studies, in addition to a group of genes related to the pathophysiology of endometriosis, namely the estrogen, progesterone and androgen receptors and the cytochrome P450 gene, as well as the p53 gene. The role of inflammation is controversial; however, it is an essential process, both in the initiation and perpetuation of the disease, in and outside the pelvis. Alterations in reactive oxygen species pathways that consequently determine oxidative stress are typical in the inflammatory environment of endometriosis. The role of environmental factors is a relatively new and broad-spectrum topic, with inconsistent evidence. Multiple factors have been studied such as endocrine-disrupting chemicals, metals, intrauterine exposure to diethylstilbesterol and lifestyle risk factors. In conclusion, endometriosis remains a mysterious condition, with multifactorial factors involved in its pathophysiology. The progress that has been made in the genetic predisposition to endometriosis may allow the establishment of new therapeutic targets. On the other hand, understanding the role of the environment in this disease may allow preventive intervention, minimizing its incidence and/or severity. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors Reproductive System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Ana Sofia Pais
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| |
Collapse
|
9
|
Guo Q, Zhou C, Xiang Y, Liang X. Pyroptosis orchestrates immune responses in endometriosis. Int Immunopharmacol 2023; 118:110141. [PMID: 37030117 DOI: 10.1016/j.intimp.2023.110141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Endometriosis is a refractory and recurrent gynecological condition which affects about 10 % of reproductive-age women. The dysfunctional immune system is a well-established element in disease pathogenesis. Pyroptosis, a novel form of inflammatory cell death, has been revealed to be strongly connected with immune responses in tumors. Nevertheless, its relationship with microenvironment characteristics and clinical features in endometriosis is unclear. Here, we performed bioinformatics analysis on published data in humans and revealed a significant but neglected role of pyroptosis in endometriosis. Samples with higher PyrScores were generally accompanied with more aggressive disease features, such as EMT, angiogenesis and immune disorders. We further confirmed in animal models that pyroptosis exacerbated immune dysfunction by recruiting activated immune cell including macrophages, DC, neutrophils, CD8+ Tcm and Tregs with unregulated CCL2, CCL3, CXCL2 and CXCL3. Collectively, pyroptosis is a distinctive feature of endometriosis. Our work provides insights into further studies targeting pyroptosis for molecular typing and individualized precise therapy.
Collapse
Affiliation(s)
- Q Guo
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China; GuangDong Engineering Technology Research Center of Fertility Preservation, China
| | - Chuanchuan Zhou
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China; GuangDong Engineering Technology Research Center of Fertility Preservation, China
| | - Yuting Xiang
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China; GuangDong Engineering Technology Research Center of Fertility Preservation, China
| | - Xiaoyan Liang
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China; GuangDong Engineering Technology Research Center of Fertility Preservation, China.
| |
Collapse
|
10
|
Suszczyk D, Skiba W, Pawłowska A, Polak G, Tarkowski R, Wertel I. Expression of Gal-9 on Dendritic Cells and Soluble Forms of TIM-3/Gal-9 in Patients Suffering from Endometriosis. Int J Mol Sci 2023; 24:ijms24065948. [PMID: 36983021 PMCID: PMC10056739 DOI: 10.3390/ijms24065948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Immune system dysregulation is clinically evident in the pathogenesis of endometriosis (EMS). Changes in the dendritic cells (DCs) activity or phenotype may be involved in the implantation and growth of endometrial tissue outside the uterus in the disease. The TIM-3/Gal-9 axis is implicated in the development of immune tolerance. However, the knowledge about the exact role of this pathway in the EMS is extremely poor. In the present study, we evaluated the expression of Gal-9 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (n = 82) and healthy subjects (n = 10) via flow cytometry. We also investigated the concentrations of soluble Gal-9 and TIM-3 in the plasma and PF of EMS patients and the control group using ELISA. We showed significantly elevated percentages of mDCs-Gal-9+ and pDCs-Gal-9+, and significantly higher concentrations of the soluble form of Gal-9 and TIM-3 in the PF of EMS patients than in circulation. Our results led us to conclude that the accumulation of Gal-9 expressing mDCs and pDCs in the PF and high sTIM-3/Gal-9 production in the peritoneal cavity could represent the hallmark of immune regulation in EMS patients, which may augment the inflammatory process and development/maintenance of local immunosuppression.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Grzegorz Polak
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Qiaomei Z, Ping W, Yanjing Z, Jinhua W, Shaozhan C, Lihong C. Features of peritoneal dendritic cells in the development of endometriosis. Reprod Biol Endocrinol 2023; 21:4. [PMID: 36639763 PMCID: PMC9837895 DOI: 10.1186/s12958-023-01058-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Emerging evidence of immunological dysfunction have been described in endometriosis. Dendritic cells (DCs), one of the main antigen-presenting cells, are specialized in the initiation and modulation of the adaptive immune response. Emerging studies demonstrated both endometrial and circulating differences in DCs populations in women with endometriosis. However, the role and mechanism of peritoneal DCs in endometriosis is still unclear. The present study was undertaken to explore the features of peritoneal DCs in the pathogenesis of endometriosis. This study is beneficial to further clarify the cause of endometriosis and provide a new insight into the medical treatment for endometriosis. METHODS The study included 12 women with endometriosis and 11 women without endometriosis. The C57BL6 mouse model of endometriosis was established by intraperitoneal injection of endometrial segments. The peritoneal DCs of endometriosis patients and mouse models were analyzed by fluorescence associated cell sorting (FACS) examination. RESULTS Increased cell density of peritoneal DCs were observed in endometriosis patients. Moreover, the proportion of mature DCs (mDCs, CD80highCD1alow cells) in the peritoneal DCs was lower whereas the proportion of immature DCs (iDCs, CD80lowCD1ahigh cells) was increased in endometriosis patients. Similarly, the cell density of peritoneal DCs in murine models increased immediately after the injection of endometrial tissues and reached the highest level at 14 days. In addition, the proportion of mDCs (CD11chighCD80high cells) in the peritoneal DCs decreased immediately after the injection of endometrial tissues and then increased with the time until 42 days, but still lower than the control group. In contrast, the proportion of iDCs (CD11chighCD80low cells) in the peritoneal DCs showed the opposite dynamic changes. However, after treated with LPS, the mDCs proportion was significantly increased, leading to lower volume and weight of the endometriosis lesions. CONCLUSIONS Increased level of peritoneal DCs facilitated the pathogenesis of endometriosis lesions, especially in the early stage of the disease. Furthermore, peritoneal DCs maturation played an important role in the development of endometriosis.
Collapse
Affiliation(s)
- Zheng Qiaomei
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, Fujian, 350212, People's Republic of China
| | - Wu Ping
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, Fujian, 350212, People's Republic of China
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China
| | - Zhao Yanjing
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian, 350015, People's Republic of China
| | - Wang Jinhua
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, Fujian, 350212, People's Republic of China
| | - Chen Shaozhan
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, Fujian, 350212, People's Republic of China
| | - Chen Lihong
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, Fujian, 350212, People's Republic of China.
| |
Collapse
|
12
|
He L, He W, Luo J, Xu M. Upregulated ENC1 predicts unfavorable prognosis and correlates with immune infiltration in endometrial cancer. Front Cell Dev Biol 2022; 10:919637. [PMID: 36531950 PMCID: PMC9751423 DOI: 10.3389/fcell.2022.919637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
A better knowledge of the molecular process behind uterine corpus endometrial carcinoma (UCEC) is important for prognosis prediction and the development of innovative targeted gene therapies. The purpose of this research is to discover critical genes associated with UCEC. We analyzed the gene expression profiles of TCGA-UCEC and GSE17025, respectively, using Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis. From four sets of findings, a total of 95 overlapping genes were retrieved. On the 95 overlapping genes, KEGG pathway and GO enrichment analysis were conducted. Then, we mapped the PPI network of 95 overlapping genes using the STRING database. Twenty hub genes were evaluated using the Cytohubba plugin, including NR3C1, ATF3, KLF15, THRA, NR4A1, FOSB, PER3, HLF, NTRK3, EGR3, MAPK13, ARNTL2, PKM2, SCD, EIF5A, ADHFE1, RERGL, TUB, and ENC1. The expression levels of NR3C1, PKM2, and ENC1 were shown to be adversely linked with the survival time of UCEC patients using univariate Cox regression analysis and Kaplan-Meier survival calculation. ENC1 were also overexpressed in UCEC tumor tissues or cell lines, as shown by quantitative real-time PCR and Western blotting. Then we looked into it further and discovered that ENC1 expression was linked to tumor microenvironment and predicted various immunological checkpoints. In conclusion, our data indicate that ENC1 may be required for the development of UCEC and may serve as a future biomarker for diagnosis and therapy.
Collapse
Affiliation(s)
- Lingling He
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou, China
- Department of Obstetrics and Gynecology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Wenjing He
- Department of Endocrinology, Baoji Gaoxin Hospital, Baoji, China
| | - Ji Luo
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou, China
- Department of Obstetrics and Gynecology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou, China
- Department of Obstetrics and Gynecology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| |
Collapse
|
13
|
Suszczyk D, Skiba W, Zardzewiały W, Pawłowska A, Włodarczyk K, Polak G, Tarkowski R, Wertel I. Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int J Mol Sci 2022; 23:ijms231911607. [PMID: 36232911 PMCID: PMC9570092 DOI: 10.3390/ijms231911607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The interaction between dendritic cells (DCs) and T cells mediated by the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1)/programmed cell death ligand 2 (PD-L2) pathway is the most important point in regulating immunological tolerance and autoimmunity. Disturbances in the quantity, maturity, and activity of DCs may be involved in the implantation and growth of endometrial tissue outside the uterus in endometriosis (EMS). However, little is known about the role of the immune checkpoint pathways in EMS. In our study, we examined the expression of PD-L1/PD-L2 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (n = 72) and healthy subjects (n = 20) via flow cytometry. The concentration of soluble PD-L1 and PD-L2 in the plasma and PF of EMS patients and the control group were determined using ELISA. We demonstrated an elevated percentage of mDCs, mDCs and pDCs with the PD-L1or PD-L2 expression, and a higher concentration of the soluble forms of PD-L1 and PD-L2 in the PF than in the plasma of EMS patients. We conclude that the peritoneal cavity environment and the PD-1/PD-L1/PD-L2 axis may play an important role in the modulation of immune response and the development and/or progression of EMS.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Witold Zardzewiały
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Grzegorz Polak
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|