1
|
Naik MUD. Adsorbents for the Uranium Capture from Seawater for a Clean Energy Source and Environmental Safety: A Review. ACS OMEGA 2024; 9:12380-12402. [PMID: 38524451 PMCID: PMC10956418 DOI: 10.1021/acsomega.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024]
Abstract
On the global level, uranium is considered the main nuclear energy source, and its removal from terrestrial ores is enough to last until the end of the current century. Therefore, a major focus is attracted toward the capture of uranium from a sustainable source (seawater). Uranium recovery from seawater has been reported over the last few decades, and recently many efforts have been devoted to the preparation of such adsorbents with higher selectivity and adsorption capacity. The purpose of this review is to report the advancement in adsorbent preparation and modification of porous materials. It also discusses challenges such as adsorbent selectivity, low uranium concentration in seawater, contact time, biofouling, and the solution to the problems necessary to ensure a better adsorption performance of the adsorbent.
Collapse
Affiliation(s)
- Mehraj-ud-din Naik
- Department of Chemical Engineering,
College of Engineering, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdelhamid I, Elwahy A, Elsabee M. An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106790-106811. [PMID: 36334198 PMCID: PMC10611627 DOI: 10.1007/s11356-022-23856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Three new cross-linked chitosan derivatives were yielded through intensification of chitosan with diverse types of bis-aldehydes. The prepared cross-linked chitosan was characterized by FTIR, 1H NMR, XRD, and TGA techniques. TGA indicated an improvement in thermal stability of the cross-linked chitosan compared with pure chitosan. Batch adsorption experiments showed that the three novel cross-linked chitosan bis-aldehyde derivatives possessed good adsorption capacity against U(VI) in the order of BFPA > BFB > BODB (adsorption capacity of the three adsorbents for U(VI) reaches 142, 124, and 114 mg/g respectively) and the adsorption isotherm and kinetic were well described by the Langmuir and the pseudo-second-order kinetic model, respectively. In addition, the prepared cross-linked chitosan bis-aldehyde derivatives were examined as U(VI) catcher from waste solutions.
Collapse
Affiliation(s)
- Amira Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Orabi
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt.
| | - Hend Salem
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Doaa Ismaiel
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Gamal Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ismail Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Maher Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
3
|
The Study of Amidoxime-Functionalized Cellulose Separate Th(IV) from Aqueous Solution. Gels 2022; 8:gels8060378. [PMID: 35735724 PMCID: PMC9223290 DOI: 10.3390/gels8060378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Selective extraction of low-concentration thorium (Th(IV)) from wastewater is a very important research topic. In this paper, amidoxime cellulose was synthesized, and its composition and structure were characterized by FT-IR, SEM, XPS, and elemental analysis. The adsorption experiment results showed that the adsorption reaction was a spontaneous exothermic process. When the solid–liquid ratio was 0.12 g/L and the pH value was 3.5, the adsorption percentage of the Th(IV) in water onto amidoxime-functionalized cellulose (AO-CELL) could reach over 80%. The maximum adsorption capacity can reach to 450 mg/g. At the same time, the adsorption selectivity, desorption process and reusability of the material were also studied. The results showed that the AO-CELL had a good selectivity for Th(IV) in the system with Sr2+, Cu2+, Mg2+, Zn2+, Pb2+, Ni2+, and Co2+ as co-ions. In the nitric acid concentration of 0.06 mol/L system, the AO-CELL desorption rate of Th(IV) can reach 95%, and the adsorption rate of Th(IV) in aqueous solution of AO-CELL is still above 60% when the AO-CELL is reused four times. The above results show that the amidoxime cellulose adsorption material synthesized by our research group has good selective adsorption performance for Th(IV) of a low concentration in an aqueous solution and has a good practical application value.
Collapse
|
4
|
Yang A, Wang Z, Zhu Y. Facile preparation and adsorption performance of low-cost MOF@cotton fibre composite for uranium removal. Sci Rep 2020; 10:19271. [PMID: 33159151 PMCID: PMC7648642 DOI: 10.1038/s41598-020-76173-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
A novel composite MOF@cotton fibre (HCF) was prepared and characterized by FTIR, SEM, XPS and TGA. The effect of various parameters on the adsorption efficiency, such as the solution pH, contact time, initial U(VI) concentration and temperature, was studied. The maximal sorption capacity (Qm) is 241.28 mg g-1 at pH 3.0 for U(VI) according to the Langmuir isotherm adsorption model, and the kinetic and thermodynamic data reveal a relatively fast entropy-driven process (ΔH0 = 13.47 kJ mol-1 and ΔS0 = 75.47 J K-1 mol-1). The removal efficiency of U(VI) by HCF is comparable with that of pure cotton fibre and as-prepared MOF (noted as HST). However, the HST composite with cotton fibre significantly improved the treatment process of U(VI) from aqueous solutions in view of higher removal efficiency, lower cost and faster solid-liquid separation. Recycling experiments showed that HCF can be used up to five times with less than 10% efficiency loss.
Collapse
Affiliation(s)
- Aili Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China.
| | - Zhijun Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| | - Yukuan Zhu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| |
Collapse
|
5
|
New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
ZHANG K, ZENG Y, LIU Z, CAO H, ZHU W, GUO Q. Removal of Radionuclide Uranium from South China’s Ion-adsorption Rare Earth Leach Liquor Using Solvent Extraction with Naphthenic Acid. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2020. [DOI: 10.15261/serdj.27.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kuifang ZHANG
- Guangdong Research Institute of Rare Metals
- Guangdong Province Key Laboratory of Rare Earth Development and Application
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals
| | - Yuping ZENG
- Department of Radiology, Guangzhou Universal Medical Imaging Diagnostic Center
| | - Zhiqiang LIU
- Guangdong Research Institute of Rare Metals
- Guangdong Province Key Laboratory of Rare Earth Development and Application
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals
| | - Hongyang CAO
- Guangdong Research Institute of Rare Metals
- Guangdong Province Key Laboratory of Rare Earth Development and Application
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals
| | - Wei ZHU
- Guangdong Research Institute of Rare Metals
- Guangdong Province Key Laboratory of Rare Earth Development and Application
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals
| | - Qiusong GUO
- Guangdong Research Institute of Rare Metals
- Guangdong Province Key Laboratory of Rare Earth Development and Application
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals
| |
Collapse
|
7
|
Takagai Y, Abe M, Oonuma C, Butsugan M, Kerlin W, Czerwinski K, Sudowe R. Synthesis and Evaluation of Reusable Desferrioxamine B Immobilized on Polymeric Spherical Microparticles for Uranium Recovery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Chisa Oonuma
- Hitachi Chemical Techno Service Co. Ltd., 4-13-1 Higashi-cho, Hitachi, Ibaraki 317-8555, Japan
| | - Michio Butsugan
- Hitachi Chemical Techno Service Co. Ltd., 4-13-1 Higashi-cho, Hitachi, Ibaraki 317-8555, Japan
| | - William Kerlin
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ken Czerwinski
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ralf Sudowe
- Department of Environmental & Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, Colorado 80523-1681, United States
| |
Collapse
|
8
|
Removal of Cr(VI) from aqueous solution using amine-impregnated crab shells in the batch process. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
El-Maadawy MM. HDEHP-Impregnated Kaolinite for Adsorption of Uranium from Dilute Phosphoric Acid. RADIOCHEMISTRY 2019. [DOI: 10.1134/s1066362219030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ghazala RA, Fathy WM, Salem FH. Application of the produced microbial citric acid as a leachate for uranium from El-Sebaiya phosphate rock. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1594141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- R. A. Ghazala
- Production Division, Nuclear Materials Authority, Cairo, Egypt
| | - W. M. Fathy
- Faculty of Engineering, Mining and Petroleum Department, Al-Azhar University, Cairo, Egypt
| | - F. H. Salem
- Production Division, Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
11
|
Liu Z, Liu D, Cai Z, Wang Y, Zhou L. Synthesis of new type dipropyl imide chelating resin and its potential for uranium(VI) adsorption. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6143-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Budnyak TM, Gładysz-Płaska A, Strizhak AV, Sternik D, Komarov IV, Majdan M, Tertykh VA. Imidazole-2yl-Phosphonic Acid Derivative Grafted onto Mesoporous Silica Surface as a Novel Highly Effective Sorbent for Uranium(VI) Ion Extraction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6681-6693. [PMID: 29370513 DOI: 10.1021/acsami.7b17594] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new imidazol-2yl-phosphonic acid/mesoporous silica sorbent (ImP(O)(OH)2/SiO2) was developed and applied for uranium(VI) ion removal from aqueous solutions. The synthesized material was characterized by fast kinetics and an extra-high adsorption capacity with respect to uranium. The highest adsorption efficiency of U(VI) ions was obtained for the reaction system at pH 4 and exceeded 618 mg/g. The uranium(VI) sorption proceeds quickly in the first step within 60 min of the adsorbent sites and ion interactions. Moreover, the equilibrium time was determined to be 120 min. The equilibrium and kinetic characteristics of the uranium(VI) ions uptake by synthesized sorbent was found to follow the Langmuir-Freundlich isotherm model and pseudo-second-order kinetics rather than the Langmuir, Dubinin-Radushkevich, and Temkin models and pseudo-first-order or intraparticle diffusion sorption kinetics. The adsorption mechanism for uranium on the sorbent was clarified basing on the X-ray photoelectron spectroscopy (XPS) analysis. The model of UO22+ binding to surface of the sorbent was proposed according to the results of XPS, i.e., a 1:1 U-to-P ratio in the sorbed complex was established. The regeneration study confirms the ImP(O)(OH)2/SiO2 sorbent can be reused. A total of 45% of uranium ions was determined as originating from the sorbent leaching in the acidic solutions, whereas when the basic solutions were used, the removal efficiency was 12%.
Collapse
Affiliation(s)
- Tetyana M Budnyak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine , 17 General Naumov Street, 03164 Kyiv, Ukraine
- KTH Royal Institute of Technology , Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | - Alexander V Strizhak
- Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Dariusz Sternik
- Maria Curie Skłodowska University , 2 Marie Curie Skłodowska Square, 20-031 Lublin, Poland
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Marek Majdan
- Maria Curie Skłodowska University , 2 Marie Curie Skłodowska Square, 20-031 Lublin, Poland
| | - Valentin A Tertykh
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine , 17 General Naumov Street, 03164 Kyiv, Ukraine
| |
Collapse
|