1
|
Irwansyah, Otsuka S, Nakagawa S. 3D printed dummy heads for crosstalk cancellation studies in bone conduction. HARDWAREX 2025; 21:e00618. [PMID: 39816671 PMCID: PMC11733055 DOI: 10.1016/j.ohx.2024.e00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Thanks to affordable 3D printers, creating complex designs like anatomically accurate dummy heads is now accessible. This study introduces dummy heads with 3D-printed skulls and silicone skins to explore crosstalk cancellation in bone conduction (BC). Crosstalk occurs when BC sounds from a transducer on one side of the head reach the cochlea on the opposite side. This can disrupt binaural cues essential for sound localization and speech understanding in noise for individuals using BC hearing devices. We provide a step-by-step guide to constructing the dummy head and demonstrate its application in canceling crosstalk. The 3D models used in this study are freely available for replication and further research. Several dummy heads were 3D-printed using ABS for the skull and silicone skins of varying hardness, with a 3-axis accelerometer at the cochlea location to simulate inner ear response. Since the cochlea is inaccessible in humans, we targeted crosstalk cancellation at the mastoid, assessing if this cancellation extended to the cochlea within the dummy heads. We compared these results with our previous experiments conducted on seven human subjects, who had their hearing thresholds measured with and without crosstalk cancellation, to evaluate if the dummy heads could reliably replicate human crosstalk cancellation effects.
Collapse
Affiliation(s)
- Irwansyah
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Sho Otsuka
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Seiji Nakagawa
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- Graduate School of Engineering, Chiba University, Chiba, Japan
- Med-Tech Link Center, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Tenio T, Boakye-Yiadom S. Characterization and selection of a skull surrogate for the development of a biofidelic head model. J Mech Behav Biomed Mater 2024; 158:106680. [PMID: 39153408 DOI: 10.1016/j.jmbbm.2024.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
This research paper explores the advancement of physical models simulating the human skull-brain complex, focusing on applications in simulating mild Traumatic Brain Injury (mTBI). Existing models, especially head forms, lack biofidelity in accurately representing the native structures of the skull, limiting the understanding of intracranial injury parameters beyond kinematic head accelerations. This study addresses this gap by investigating the use of additive manufacturing (AM) techniques to develop biofidelic skull surrogates. Materials such as Polylactic Acid (PLA), a bone-simulant PLA variant, and Hydroxyapatite-coated Poly(methyl methacrylate) (PMMA) were used to create models tested for their flexural modulus and strength. The trabecular bone regions were simulated by adjusting infill densities (30%, 50%, 80%) and print raster directions, optimizing manufacturing parameters for biofidelic performance. Among the tested materials, PLA and its bone-simulating variant printed at 80% infill density with a side (tangential) print orientation demonstrated the closest approximation to the mechanical properties of cranial bone, yielding a mean flexural modulus of 1337.2 MPa and a mean ultimate strength of 56.9 MPa. Statistical analyses showed that infill density significantly influenced the moduli and strength of the printed simulants. Digital Image Correlation (DIC) corroborated the comparable performance of the simulants, showing similar strain and displacement behaviors to native skull bone. Notably, the performance of the manufactured cortical and trabecular regions underscored their crucial role in achieving biofidelity, with the trabecular structure providing critical dampening effects when the native bone is loaded. This study establishes PLA, particularly its bone-simulant variant, as an optimal candidate for cranial bone simulants, offering significant potential for developing more accurate biofidelic head models in mTBI research.
Collapse
Affiliation(s)
- Tristan Tenio
- Lassonde School of Engineering Mechanical Engineering Department , York University , Bergeron Building of Engineering Excellence , 11 Arboretum Lane, North York, ON, M3J2S5, Canada.
| | - Solomon Boakye-Yiadom
- Lassonde School of Engineering Mechanical Engineering Department , York University , Bergeron Building of Engineering Excellence , 11 Arboretum Lane, North York, ON, M3J2S5, Canada
| |
Collapse
|
3
|
Han Y, Yang H, Wu H, Pan D, Wang BY. Quantitative analysis of the protective performance of bicycle helmet with multi-direction impact protection system in oblique impact tests. Chin J Traumatol 2024; 27:226-234. [PMID: 38490942 PMCID: PMC11357785 DOI: 10.1016/j.cjtee.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE The current study aimed to assess the protective performance of helmets equipped with multi-directional impact protection system (MIPS) under various oblique impact loads. METHODS Initially, a finite element model of a bicycle helmet with MIPS was developed based on the scanned geometric parameters of an actual bicycle helmet. Subsequently, the validity of model was confirmed using the KASK WG11 oblique impact test method. Three different impact angles (30°, 45°, and 60°) and 2 varying impact speeds (5 m/s and 8 m/s) were employed in oblique tests to evaluate protective performance of MIPS in helmets, focusing on injury assessment parameters such as peak linear acceleration (PLA) and peak angular acceleration (PAA) of the head. RESULTS The results demonstrated that in all impact simulations, both assessment parameters were lower during impact for helmets equipped with MIPS compared to those without. The PAA was consistently lower in the MIPS helmet group, whereas the difference in PLA was not significant in the no-MIPS helmet group. For instance, at an impact velocity of 8 m/s and a 30° inclined anvil, the MIPS helmet group exhibited a PAA of 3225 rad/s2 and a PLA of 281 g. In contrast, the no-MIPS helmet group displayed a PAA of 8243 rad/s2 and a PLA of 292 g. Generally, both PAA and PLA parameters decreased with the increase of anvil angles. At a 60° anvil angles, PAA and PLA values were 664 rad/s2 and 20.7 g, respectively, reaching their minimum. CONCLUSION The findings indicated that helmets incorporating MIPS offer enhanced protection against various oblique impact loads. When assessing helmets for oblique impacts, the utilization of larger angle anvils and rear impacts might not adequately evaluate protective performance during an impact event. These findings will guide advancements in helmet design and the refinement of oblique impact test protocols.
Collapse
Affiliation(s)
- Yong Han
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian province, China; Fujian Key Laboratory of Bus Advanced Design and Manufacturing, Xiamen, 361024, Fujian province, China.
| | - Hao Yang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian province, China; Fujian Key Laboratory of Bus Advanced Design and Manufacturing, Xiamen, 361024, Fujian province, China
| | - He Wu
- Fujian Key Laboratory of Bus Advanced Design and Manufacturing, Xiamen, 361024, Fujian province, China; School of Aerospace Engineering, Xiamen University, Xiamen, 361005, Fujian province, China
| | - Di Pan
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian province, China; Fujian Key Laboratory of Bus Advanced Design and Manufacturing, Xiamen, 361024, Fujian province, China
| | - Bing-Yu Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian province, China; Fujian Key Laboratory of Bus Advanced Design and Manufacturing, Xiamen, 361024, Fujian province, China
| |
Collapse
|
4
|
Hanna M, Ali A, Bhatambarekar P, Modi K, Lee C, Morrison B, Klienberger M, Pfister BJ. Anatomical Features and Material Properties of Human Surrogate Head Models Affect Spatial and Temporal Brain Motion under Blunt Impact. Bioengineering (Basel) 2024; 11:650. [PMID: 39061732 PMCID: PMC11273380 DOI: 10.3390/bioengineering11070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a biomechanical problem where the initiating event is dynamic loading (blunt, inertial, blast) to the head. To understand the relationship between the mechanical parameters of the injury and the deformation patterns in the brain, we have previously developed a surrogate head (SH) model capable of measuring spatial and temporal deformation in a surrogate brain under blunt impact. The objective of this work was to examine how material properties and anatomical features affect the motion of the brain and the development of injurious deformations. The SH head model was modified to study six variables independently under blunt impact: surrogate brain stiffness, surrogate skull stiffness, inclusion of cerebrospinal fluid (CSF), head/skull size, inclusion of vasculature, and neck stiffness. Each experimental SH was either crown or frontally impacted at 1.3 m/s (3 mph) using a drop tower system. Surrogate brain material, the Hybrid III neck stiffness, and skull stiffness were measured and compared to published properties. Results show that the most significant variables affecting changes in brain deformation are skull stiffness, inclusion of CSF and surrogate brain stiffness. Interestingly, neck stiffness and SH size significantly affected the strain rate only suggesting these parameters are less important in blunt trauma. While the inclusion of vasculature locally created strain concentrations at the interface of the artery and brain, overall deformation was reduced.
Collapse
Affiliation(s)
- Michael Hanna
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.H.); (A.A.); (P.B.); (K.M.)
| | - Abdus Ali
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.H.); (A.A.); (P.B.); (K.M.)
| | - Prasad Bhatambarekar
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.H.); (A.A.); (P.B.); (K.M.)
| | - Karan Modi
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.H.); (A.A.); (P.B.); (K.M.)
| | - Changhee Lee
- Neurotrauma and Repair Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (C.L.)
| | - Barclay Morrison
- Neurotrauma and Repair Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (C.L.)
| | - Michael Klienberger
- The Army Research Laboratory, Aberdeen Proving Grounds, Aberdeen, MD 21005, USA;
| | - Bryan J. Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.H.); (A.A.); (P.B.); (K.M.)
| |
Collapse
|
5
|
Li Y, Vakiel P, Adanty K, Ouellet S, Vette AH, Raboud D, Dennison CR. Evaluating the Intracranial Pressure Biofidelity and Response Repeatability of a Physical Head-Brain Model in Frontal Impacts. Ann Biomed Eng 2023; 51:1816-1833. [PMID: 37095278 DOI: 10.1007/s10439-023-03198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 04/26/2023]
Abstract
Headforms are widely used in head injury research and headgear assessment. Common headforms are limited to replicating global head kinematics, although intracranial responses are crucial to understanding brain injuries. This study aimed to evaluate the biofidelity of intracranial pressure (ICP) and the repeatability of head kinematics and ICP of an advanced headform subjected to frontal impacts. Pendulum impacts were performed on the headform using various impact velocities (1-5 m/s) and impactor surfaces (vinyl nitrile 600 foam, PCM746 urethane, and steel) to simulate a previous cadaveric experiment. Head linear accelerations and angular rates in three axes, cerebrospinal fluid ICP (CSFP), and intraparenchymal ICP (IPP) at the front, side, and back of the head were measured. The head kinematics, CSFP, and IPP demonstrated acceptable repeatability with coefficients of variation generally being less than 10%. The BIPED front CSFP peaks and back negative peaks were within the range of the scaled cadaver data (between the minimum and maximum values reported by Nahum et al.), while side CSFPs were 30.9-92.1% greater than the cadaver data. CORrelation and Analysis (CORA) ratings evaluating the closeness of two time histories demonstrated good biofidelity of the front CSFP (0.68-0.72), while the ratings for the side (0.44-0.70) and back CSFP (0.27-0.66) showed a large variation. The BIPED CSFP at each side was linearly related to head linear accelerations with coefficients of determination greater than 0.96. The slopes for the BIPED front and back CSFP-acceleration linear trendlines were not significantly different from cadaver data, whereas the slope for the side CSFP was significantly greater than cadaver data. This study informs future applications and improvements of a novel head surrogate.
Collapse
Affiliation(s)
- Yizhao Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Paris Vakiel
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| | - Kevin Adanty
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, T5G 0B7, Canada
| | - Donald Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Christopher R Dennison
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
6
|
Hanna M, Ali A, Klienberger M, Pfister BJ. A Method for Evaluating Brain Deformation Under Sagittal Blunt Impacts Using a Half-Skull Human-Scale Surrogate. J Biomech Eng 2023; 145:1155772. [PMID: 36562120 DOI: 10.1115/1.4056547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Trauma to the brain is a biomechanical problem where the initiating event is a dynamic loading (blunt, inertial, blast) to the head. To understand the relationship between the mechanical parameters of the injury and the spatial and temporal deformation patterns in the brain, there is a need to develop a reusable and adaptable experimental traumatic brain injury (TBI) model that can measure brain motion under varying parameters. In this effort, we aim to directly measure brain deformation (strain and strain rates) in different brain regions in a human head model using a drop tower. METHODS Physical head models consisting of a half, sagittal plane skull, brain, and neck were constructed and subjected to crown and frontal impacts at two impact speeds. All tests were recorded with a high-speed camera at 1000 frames per second. Motion of visual markers within brain surrogates were used to track deformations and calculate spatial strain histories in 6 brain regions of interest. Principal strains, strain rates and strain impulses were calculated and reported. RESULTS Higher impact velocities corresponded to higher strain values across all impact scenarios. Crown impacts were characterized by high, long duration strains distributed across the parietal, frontal and hippocampal regions whereas frontal impacts were characterized by sharply rising and falling strains primarily found in the parietal, frontal, hippocampal and occipital regions. High strain rates were associated with short durations and impulses indicating fast but short-lived strains. 2.23 m/s (5 mph) crown impacts resulted in 53% of the brain with shear strains higher than 0.15 verses 32% for frontal impacts. CONCLUSIONS The results reveal large differences in the spatial and temporal strain responses between crown and forehead impacts. Overall, the results suggest that for the same speed, crown impact leads to higher magnitude strain patterns than a frontal impact. The data provided by this model provides unique insight into the spatial and temporal deformation patterns that have not been provided by alternate surrogate models. The model can be used to investigate how anatomical, material and loading features and parameters can affect deformation patterns in specific regions of interest in the brain.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102
| | - Abdus Ali
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102
| | | | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102
| |
Collapse
|
7
|
Li Y, Vakiel P, Adanty K, Ouellet S, Vette AH, Raboud D, Dennison CR. Influence of surrogate scalp material and thickness on head impact responses: Toward a biofidelic head-brain physical model. J Mech Behav Biomed Mater 2023; 142:105859. [PMID: 37071964 DOI: 10.1016/j.jmbbm.2023.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Advanced physical head models capable of replicating both global kinematics and intracranial mechanics of the human head are required for head injury research and safety gear assessment. These head surrogates require a complex design to accommodate realistic anatomical details. The scalp is a crucial head component, but its influence on the biomechanical response of such head surrogates remains unclear. This study aimed to evaluate the influence of surrogate scalp material and thickness on head accelerations and intraparenchymal pressures using an advanced physical head-brain model. Scalp pads made from four materials (Vytaflex20, Vytaflex40, Vytaflex50, PMC746) and each material with four thicknesses (2, 4, 6, and 8 mm) were evaluated. The head model attached to the scalp pad was dropped onto a rigid plate from two heights (5 and 19.5 cm) and at three head locations (front, right side, and back). While the selected materials' modulus exhibited a relatively minor effect on head accelerations and coup pressures, the effect of scalp thickness was shown to be major. Moreover, by decreasing the thickness of the head's original scalp by 2 mm and changing the original scalp material from Vytaflex 20 to Vytaflex 40 or Vytaflex 50, the head acceleration biofidelity ratings could improve by 30% and approached the considered rating (0.7) of good biofidelity. This study provides a potential direction for improving the biofidelity of a novel head model that might be a useful tool in head injury research and safety gear tests. This study also has implications for selecting appropriate surrogate scalps in the future design of physical and numerical head models.
Collapse
Affiliation(s)
- Yizhao Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Paris Vakiel
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| | - Kevin Adanty
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Canada-Valcartier Research Center, Canada.
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, T5G 0B7, Canada.
| | - Donald Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Christopher R Dennison
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
8
|
Butterfield J, Post A, Karton C, Robidoux MA, Gilchrist M, Hoshizaki TB. A video analysis examination of the frequency and type of head impacts for player positions in youth ice hockey and FE estimation of their impact severity. Sports Biomech 2023:1-17. [PMID: 36911883 DOI: 10.1080/14763141.2023.2186941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
This research employed head impact frequency and frequency of estimated strain to analyse the influence of player position on brain trauma in U15 and U18 youth ice hockey. The methods involved a video analysis of 30 U15 and 30 U18 games where frequency, type of head impact event, and player position during impact was recorded. These impacts were then simulated in the laboratory using physical reconstructions and finite element modelling to determine the brain strains for each impact category. U15 forwards experienced significantly higher head impact frequencies (139) when compared to defenceman (50), with goalies showing the lowest frequency (6) (p < 0.05). U18 forwards experienced significantly higher head impact frequencies (220) when compared to defenceman (92), with goalies having the least frequent head impacts (4) (p < 0.05). The U15 forwards had a significantly higher frequency of head impacts at the very low and med strains and the U18s had higher frequency of head impacts for the very low and low level strains (p < 0.05). Game rule changes and equipment innovation may be considered to mitigate the increased risk faced by forwards compared to other positions in U15 and U18 youth ice hockey.
Collapse
Affiliation(s)
| | - Andrew Post
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Clara Karton
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Michael Gilchrist
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
9
|
Shelley A, Winwood K, Allen T, Horner K. Effectiveness of hard inserts in sports mouthguards: a systematic review. Br Dent J 2022:10.1038/s41415-022-4089-x. [PMID: 35379927 DOI: 10.1038/s41415-022-4089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022]
Abstract
Objectives To improve the protective capacity of conventional ethylene-vinyl acetate mouthguards, some authors have suggested reinforcement with a hard material to distribute impact energy more widely. The research question for this systematic review was: 'does the inclusion of a hard insert in mouthguards improve the protection of anterior teeth from a direct blow?'Data sources Three bibliographic databases (PubMed/Medline, Ovid/Embase and the Cochrane CENTRAL databases) were searched up to 20 February 2021. Additional searches included hand searching of key articles and journals.Data selection A systematic search of the literature included studies where the intervention was the incorporation of hard material into sports mouthguards and where the comparator was conventional mouthguard material. Eligibility required the use of anatomical specimens or anatomical analogues which included or represented anterior maxillary teeth. Twelve eligible publications were identified.Data extraction Data extraction was first carried out independently by two reviewers. Discrepancies were resolved by discussion.Data synthesis Results of individual studies were conflicting and methodological diversity created difficulty in making a synthesis of results. All studies employed low-energy impacts that did not represent the potentially high-energy impacts encountered in sport.Conclusion The efficacy of hard inserts in sports mouthguards has not been demonstrated.
Collapse
Affiliation(s)
- Andrew Shelley
- Dental Practitioner, Shelley and Pope Dental Practice, 117 Stockport Road, Denton, Manchester, M34 6DH, UK; Honorary Research Fellow, University of Manchester, Manchester, UK; Team Dentist, Manchester Storm Ice Hockey Club, Manchester, UK.
| | - Keith Winwood
- Musculoskeletal Science and Sports Medicine, Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Thomas Allen
- Department of Engineering, Manchester Metropolitan University, Faculty of Science and Engineering, Manchester, UK
| | - Keith Horner
- Emeritus Professor of Oral and Maxillofacial Imaging, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Bouattour Y, Sautou V, Hmede R, El Ouadhi Y, Gouot D, Chennell P, Lapusta Y, Chapelle F, Lemaire JJ. A Minireview on Brain Models Simulating Geometrical, Physical, and Biochemical Properties of the Human Brain. Front Bioeng Biotechnol 2022; 10:818201. [PMID: 35419353 PMCID: PMC8996142 DOI: 10.3389/fbioe.2022.818201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing body of evidences that brain surrogates will be of great interest for researchers and physicians in the medical field. They are currently mainly used for education and training purposes or to verify the appropriate functionality of medical devices. Depending on the purpose, a variety of materials have been used with specific and accurate mechanical and biophysical properties, More recently they have been used to assess the biocompatibility of implantable devices, but they are still not validated to study the migration of leaching components from devices. This minireview shows the large diversity of approaches and uses of brain phantoms, which converge punctually. All these phantoms are complementary to numeric models, which benefit, reciprocally, of their respective advances. It also suggests avenues of research for the analysis of leaching components from implantable devices.
Collapse
Affiliation(s)
- Yassine Bouattour
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Rodayna Hmede
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Youssef El Ouadhi
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
| | - Dimitri Gouot
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Yuri Lapusta
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Frédéric Chapelle
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| |
Collapse
|
11
|
Popov VV, Kudryavtseva EV, Kumar Katiyar N, Shishkin A, Stepanov SI, Goel S. Industry 4.0 and Digitalisation in Healthcare. MATERIALS 2022; 15:ma15062140. [PMID: 35329592 PMCID: PMC8953130 DOI: 10.3390/ma15062140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Industry 4.0 in healthcare involves use of a wide range of modern technologies including digitisation, artificial intelligence, user response data (ergonomics), human psychology, the Internet of Things, machine learning, big data mining, and augmented reality to name a few. The healthcare industry is undergoing a paradigm shift thanks to Industry 4.0, which provides better user comfort through proactive intervention in early detection and treatment of various diseases. The sector is now ready to make its next move towards Industry 5.0, but certain aspects that motivated this review paper need further consideration. As a fruitful outcome of this review, we surveyed modern trends in this arena of research and summarised the intricacies of new features to guide and prepare the sector for an Industry 5.0-ready healthcare system.
Collapse
Affiliation(s)
- Vladimir V. Popov
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Higher School of Engineering, Ural Federal University, 620002 Ekaterinburg, Russia;
- Correspondence:
| | - Elena V. Kudryavtseva
- Obstetrics and Gynecology Department, Ural State Medical University, 620000 Ekaterinburg, Russia;
| | - Nirmal Kumar Katiyar
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK; (N.K.K.); (S.G.)
| | - Andrei Shishkin
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1007 Riga, Latvia;
| | - Stepan I. Stepanov
- Higher School of Engineering, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK; (N.K.K.); (S.G.)
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
12
|
Zhao W, Wu Z, Ji S. Displacement Error Propagation From Embedded Markers to Brain Strain. J Biomech Eng 2021; 143:101001. [PMID: 33954705 PMCID: PMC8299812 DOI: 10.1115/1.4051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Head injury model validation has evolved from against pressure to relative brain-skull displacement, and more recently, against marker-based strain. However, there are concerns on strain data quality. In this study, we parametrically investigate how displacement random errors and synchronization errors propagate into strain. Embedded markers from four representative configurations are used to form unique and nonoverlapping tetrahedrons, triangles, and linear elements. Marker displacements are then separately subjected to up to ±10% random displacement errors and up to ±2 ms synchronization errors. Based on 100 random trials in each perturbation test, we find that smaller strain errors relative to the baseline peak strains are significantly associated with larger element sizes (volume, area, or length; p < 0.05). When displacement errors are capped at the two extreme levels, the earlier "column" and "cluster" configurations provide few usable elements with relative strain error under an empirical threshold of 20%, while about 30-80% of elements in recent "repeatable" and "uniform" configurations are considered otherwise usable. Overall, denser markers are desired to provide exhaustive pairwise linear elements with a range of sizes to balance the need for larger elements to minimize strain error but smaller elements to increase the spatial resolution in strain sampling. Their signed strains also provide unique and unambiguous information on tissue tension and compression. This study may provide useful insights into the scrutinization of existing experimental data for head injury model strain validation and to inform how best to design new experiments in the future.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Zheyang Wu
- Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609
| |
Collapse
|
13
|
Li Y, Ouellet S, Vette AH, Raboud D, Martin A, Dennison CR. Evaluation of the Kinematic Biofidelity and Inter-Test Repeatability of Global Accelerations and Brain Parenchyma Pressure for a Head-Brain Physical Model. J Biomech Eng 2021; 143:1106231. [PMID: 33817744 DOI: 10.1115/1.4050752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 11/08/2022]
Abstract
Head surrogates are widely used in biomechanical research and headgear assessment. They are designed to approximate the inertial and mechanical properties of the head and are instrumented to measure global head kinematics. Due to the recent interest in studying disruption to the brain, some head models include internal fluid layers and brain tissue, and instrumentation to measure head intracranial biomechanics. However, it is unknown whether such models exhibit realistic human responses. Therefore, this study aims to assess the biofidelity and repeatability of a head model, the Blast Injury Protection Evaluation Device (BIPED), that can measure both global head kinematics and intraparenchymal pressure (IPP) for application in blunt impact, a common loading scenario in civilian life. Drop tests were conducted with the BIPED and the widely used Hybrid III headform. BIPED measures were compared to the Hybrid III data and published cadaveric data, and the biofidelity level of the global linear acceleration was quantified using CORrelation and Analysis (CORA) ratings. The repeatability of the acceleration and IPP measurements in multiple impact scenarios was evaluated via the coefficient of variation (COV) of the magnitudes and pulse durations. BIPED acceleration peaks were generally not significantly different from cadaver and Hybrid III data. The CORA ratings for the BIPED and Hybrid III accelerations ranged from 0.50 to 0.61 and 0.51 to 0.77, respectively. The COVs of acceleration and IPP were generally below 10%. This study is an important step toward a biofidelic head surrogate measuring both global kinematics and IPP in blunt impact.
Collapse
Affiliation(s)
- Yizhao Li
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec City, PQ G3J 1X5, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Don Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ashton Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
14
|
Zullo G, Silvestroni AL, Candiotto G, Koptyug A, Petrone N. A Novel Multi-Axial Pressure Sensor Probe for Measuring Triaxial Stress States Inside Soft Materials. SENSORS 2021; 21:s21103487. [PMID: 34067759 PMCID: PMC8155985 DOI: 10.3390/s21103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
This paper presents the concept, design, construction, and validation of a novel probe based on the hexadic disposition of six pressure sensors suitable for measuring triaxial stress states inside bulky soft materials. The measurement of triaxial stress states inside bulk materials such as brain tissue surrogates is a challenging task needed to investigate internal organs’ stress states and validate FE models. The purpose of the work was the development and validation of a 17 × 17 × 17 mm probe containing six pressure sensors. To do so, six piezoresistive pressure sensors of 6 mm diameter were arranged into an hexad at three cartesian axes and bisecting angles, based on the analytical solution of the stress tensor. The resulting probe was embedded in a soft silicone rubber of known characteristics, calibrated under cyclic compression and shear in three orientations, and statically validated with combined loads. A calibration matrix was computed, and validation tests allowed us to estimate Von Mises stress under combined stress with an error below 6%. Hence, the proposed probe design and method can give indications about the complex stress state developing internally to soft materials under triaxial high-strain fields, opening applications in the analysis of biological models or physical surrogates involving parenchyma organs.
Collapse
Affiliation(s)
- Giuseppe Zullo
- Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy; (G.Z.); (A.L.S.); (G.C.)
| | - Anna Leidy Silvestroni
- Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy; (G.Z.); (A.L.S.); (G.C.)
| | - Gianluca Candiotto
- Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy; (G.Z.); (A.L.S.); (G.C.)
| | - Andrey Koptyug
- Department of Quality and Mechanical Engineering, Mid Sweden University, Campus Östersund Kunskapens väg 8, SE-831 25 Östersund, Sweden;
| | - Nicola Petrone
- Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy; (G.Z.); (A.L.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-827-6761
| |
Collapse
|
15
|
Describing headform pose and impact location for blunt impact testing. J Biomech 2020; 109:109923. [PMID: 32807308 DOI: 10.1016/j.jbiomech.2020.109923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
Reproduction of anthropomorphic test device (ATD) head impact test methods is a critical element needed to develop guidance and technologies that reduce the risk for brain injury in sport. However, there does not appear to be a consensus for reporting ATD pose and impact location for industry and researchers to follow. Thus, the purpose of this article is to explore the various methods used to report impact location and ATD head pose for sport-related head impact testing and provide recommendations for standardizing these descriptions. A database search and exclusion process identified 137 articles that met the review criteria. Only 4 of the 137 articles provided a description similar to the method we propose to describe ATD pose and impact location. We thus propose a method to unambiguously convey the impact location and pose of the ATD based on the sequence, quantifiable design, and articulation of ATD mount joints. This reporting method has been used to a limited extent in the literature, but we assert that adoption of this method will help to standardize the reporting of ATD headform pose and impact location as well as aid in the replication of impact test protocols across laboratories.
Collapse
|
16
|
Scher IS, Stepan LL, Shealy JE, Hoover RW. Examining ski area padding for head and neck injury mitigation. J Sci Med Sport 2020; 24:1010-1014. [PMID: 32456978 DOI: 10.1016/j.jsams.2020.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The injury mitigation capabilities of foam, ski-area padding was examined for headfirst impacts. DESIGN AND METHODS A custom-made pendulum impactor system was constructed using an instrumented, partial 50th-percentile-male Hybrid-III anthropomorphic testing device (ATD). For each test, the ATD was raised 1.0m, released, and swung into a 20-cm diameter wooden pole. Test trials were conducted with the wooden pole covered by ski area padding (five conditions of various foam types and thicknesses) or unpadded. Linear (linear acceleration and HIC15) and angular (angular velocity, angular acceleration, and BrIC) kinematics were examined and used to estimate the likelihood of severe brain injury. Cervical spine loads were compared to the injury assessment reference values for serious injury. Further tests were conducted to examine the changes produced by the addition of a snowsport helmet. RESULTS 38 test trials were recorded with a mean (±sd) impact speed of 4.2 (±0.03) m/s. Head, resultant linear acceleration, HIC15, and associated injury likelihoods were tempered by ski area padding at the impact speed tested. Ski area padding did not reduce brain injury likelihood from rotational kinematics (p>0.05 for all comparisons) or reduce the cervical spine compression below injury assessment reference values. The addition of a helmet did not reduce significantly the likelihoods of brain or cervical spine injury. CONCLUSIONS At the impact speed tested, ski area padding provided limited impact protection for the head (for linear kinematics) but did not protect against severe brain injuries due to rotational kinematics or serious cervical spine injuries.
Collapse
Affiliation(s)
- Irving S Scher
- Guidance Engineering and Applied Research, Seattle, WA, USA.
| | - Lenka L Stepan
- Guidance Engineering and Applied Research, Seattle, WA, USA
| | | | | |
Collapse
|
17
|
Scher IS, Stepan LL, Hoover RW. Head and neck injury potential during water sports falls: examining the effects of helmets. SPORTS ENGINEERING 2020. [DOI: 10.1007/s12283-020-0321-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractHead and neck injuries sustained during water skiing and wakeboarding occur as a result of falls in water and collisions with obstacles, equipment, or people. Though water sports helmets are designed to reduce injury likelihood from head impacts with hard objects, some believe that helmets increase head and neck injury rates for falls into water (with no impact to a solid object). The effect of water sports helmets on head kinematics and neck loads during simulated falls into water was evaluated using a custom-made pendulum system with a Hybrid-III anthropometric testing device. Two water entry configurations were evaluated: head-first and pelvis-first water impacts with a water entry speed of 8.8 ± 0.1 m/s. Head and neck injury metrics were compared to injury assessment reference values and the likelihoods of brain injury were determined from head kinematics. Water sport helmets did not increase the likelihood of mild traumatic brain injury compared to a non-helmeted condition for both water entry configurations. Though helmets did increase injury metrics (such as head acceleration, HIC, and cervical spine compression) in some test configurations, the metrics remained below injury assessment reference values and the likelihoods of injury remained below 1%. Using the effective drag coefficients, the lowest water impact speed needed to produce cervical spine injury was estimated to be 15 m/s. The testing does not support the supposition that water sports helmets increase the likelihood of head or neck injury in a typical fall into water during water sports.
Collapse
|
18
|
Dickson TJ, Terwiel FA. Head injury and helmet usage trends for alpine skiers and snowboarders in western Canada during the decade 2008-9 to 2017-18. J Sci Med Sport 2020; 24:1004-1009. [PMID: 32111567 DOI: 10.1016/j.jsams.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This research explores snowsport head injury trends in western Canadian resorts over the decade 2008-2018. DESIGN Ecological study. METHODS Head-injury and participation data on alpine skiing and snowboarding (snowsports) was provided by the Canada West Ski Areas Association (CWSAA) for 2008-2018. Injury reports from the ski patrol of 52 western Canadian resorts were analysed. 29 resorts were included where there was both injury and participation data for at least 8 out of 10 seasons, resulting in analysis of 10,371 reports. Data was imported into SPSS 24 for analysis using descriptive statistics, chi-squared analysis, odds ratios and linear regression. RESULTS Over the decade: the head injury rate was 0.205 injuries per thousand skier days. Head injuries were 9-10% of all injuries, significantly lower for skiers (8.3%) than snowboarders (10.9%). There were no significant differences in helmet-usage rates of injured and non-injured populations. 80.6% of injured participants wore a helmet, those wearing a helmet were 8% more likely to report a head injury than those not wearing a helmet. There was little variation in the proportion of head injuries reported as concussion, but a 50% reduction in ambulance or helicopter transport, a head-injury severity proxy. There was a significant relationship between the proportion of snowsport participants who were snowboarders and the head-injury rate. CONCLUSIONS Head injuries remain a rare event. There has been a decline in the severity of reported head injuries which may be a function of a decline in the proportion of snowboarders in snowsports.
Collapse
Affiliation(s)
- Tracey J Dickson
- University of Canberra Research Institute for Sport and Exercise, University Avenue, University of Canberra, Australia.
| | - F Anne Terwiel
- Faculty of Adventure, Culinary Arts and Tourism, Thompson Rivers University, Canada
| |
Collapse
|
19
|
Niu J, Zhang C, Chen X, Ma C, Chen L, Tong C. A Novel Helmet Fitness Evaluation Device Based on the Flexible Pressure Sensor Matrix. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19183823. [PMID: 31487875 PMCID: PMC6767239 DOI: 10.3390/s19183823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 06/09/2023]
Abstract
Helmet comfort has always been important for the evaluation of infantry equipment accessories and has for decades not been well addressed. To evaluate the stability and comfort of the helmet, this paper proposes a novel type of helmet comfort measuring device. Conventional pressure measuring devices can measure the pressure of flat surfaces well, but they cannot accurately measure the pressure of curved structures with large curvatures. In this paper, a strain-resistive flexible sensor with a slice structure was used to form a matrix network containing more than a 100 sensors that fit the curved surface of the head well. Raw data were collected by the lower computer, and the original resistance value of the pressure was converted from analog to digital by the A/D conversion circuit that converts an analog signal into a digital signal. Then, the data were output to the data analysis and image display module of the upper computer. The complex curved surface of the head poses a challenge for the appropriate layout design of a head pressure measuring device. This study is expected to allow this intuitive and efficient technology to fit other wearable products, such as goggles, glasses, earphones and neck braces.
Collapse
Affiliation(s)
- Jianwei Niu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Cong Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiao Chen
- Military Institute of Engineering and Technology, Academy of Military Sciences, Beijing 100091, China.
| | - Chuang Ma
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Liyang Chen
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chao Tong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|