1
|
Ducas J, Pano-Rodriguez A, Vadez G, Abboud J. Regional flexion relaxation phenomenon in lumbar extensor muscles under delayed-onset muscle soreness: high-density surface electromyography insights. Eur J Appl Physiol 2024:10.1007/s00421-024-05678-x. [PMID: 39661114 DOI: 10.1007/s00421-024-05678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE This study aimed to investigate whether lumbar delayed-onset muscle soreness (DOMS) impacts the magnitude of the flexion relaxation phenomenon regionally. METHODS Eighteen adult participants (9 men and 9 women) performed flexion extension movement under two conditions (with and without DOMS). Lumbar muscle activation strategies were recorded using high-density surface electromyography (HDsEMG) on both sides of the trunk. To determine the spatial distribution of flexion relaxation phenomenon, flexion relaxation ratio of muscle activity was computed for all electrodes of the HDsEMG grid and the coordinates of the centroid (average position of flexion relaxation ratio across the HDsEMG grid) in the mediolateral and craniocaudal axis were calculated. RESULTS The results revealed a cranial shift (~ 6 mm) of flexion relaxation phenomenon within the lumbar extensor muscles when DOMS was present (both sides: p < 0.05), possibly attributed to the increased recruitment of lumbar stabilizing muscles located caudally, which may serve as a guarding mechanism to pain. CONCLUSION These results highlight the importance of evaluating the entire lumbar region when assessing the flexion relaxation phenomenon.
Collapse
Affiliation(s)
- Julien Ducas
- Department of Human Kinetics, Université du Québec À Trois-Rivières, 3351, Boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada.
- Groupe de Recherche Sur Les Affections Neuromusculosquelettiques (GRAN), Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada.
| | - Alvaro Pano-Rodriguez
- Department of Human Kinetics, Université du Québec À Trois-Rivières, 3351, Boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
- Groupe de Recherche Sur Les Affections Neuromusculosquelettiques (GRAN), Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Guillaume Vadez
- Department of Human Kinetics, Université du Québec À Trois-Rivières, 3351, Boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
- Groupe de Recherche Sur Les Affections Neuromusculosquelettiques (GRAN), Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jacques Abboud
- Department of Human Kinetics, Université du Québec À Trois-Rivières, 3351, Boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
- Groupe de Recherche Sur Les Affections Neuromusculosquelettiques (GRAN), Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
2
|
Sampieri A, Marcolin G, Gennaro F, Magistrelli E, Del Vecchio A, Moro T, Paoli A, Casolo A. Alterations in magnitude and spatial distribution of erector spinae muscle activity in cyclists with a recent history of low back pain. Eur J Appl Physiol 2024:10.1007/s00421-024-05628-7. [PMID: 39365339 DOI: 10.1007/s00421-024-05628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE While cycling offers several health benefits, repetitive loading and maintenance of static postures for prolonged periods expose cyclists to low back pain (LBP). Despite high LBP prevalence in cyclists, underlying pathomechanics and specific lumbar region muscle activation patterns during cycling are unclear. Here, we compared lumbar erector spinae (ES) muscles activation and spatial distribution activity in cyclists with and without recent LBP history. METHODS Ten cyclists with recent LBP history (LBPG; Oswestry Disability Index score ~ 17.8%) and 11 healthy cyclists (CG) were recruited. After assessing the Functional Threshold Power (FTP), participants underwent an incremental cycling test with 4 × 3 min steps at 70%, 80%, 90%, and 100% of their FTP. High-density surface electromyography (HDsEMG) signals were recorded from both lumbar ES using two 64-channel grids. Information about ES activation levels (root-mean-square, RMS), degree of homogeneity (entropy), and cranio-caudal displacement of muscle activity (Y-axis coordinate of the barycenter of RMS maps) was extracted from each grid separately and then grand-averaged across both grids. RESULTS Repeated-measure 2-way ANOVAs showed a significant intensity by group interaction for RMS amplitude (p = 0.003), entropy (p = 0.038), and Y-bar displacement (p = 0.033). LBPG increased RMS amplitude between 70-100% (+ 19%, p = 0.010) and 80-100% FTP (+ 21%, p = 0.004) and decreased entropy between 70-100% FTP (- 8.4%, p = 0.003) and 80-100% FTP (- 8.5%, p = 0.002). Between-group differences emerged only at 100% FTP (+ 9.6%, p = 0.049) for RMS amplitude. CONCLUSION Our findings suggest that cyclists with recent LBP history exhibit higher ES muscles activation and less homogeneous activity compared to healthy controls, suggesting potential inefficient muscle recruitment strategy. TRIAL REGISTRATION NUMBER HEC-DSB/09-2023.
Collapse
Affiliation(s)
- Alessandro Sampieri
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
- Brain, Mind and Computer Science Doctoral Program, University of Padua, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy.
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
| | - Emanuele Magistrelli
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
- Brain, Mind and Computer Science Doctoral Program, University of Padua, Padua, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy
| |
Collapse
|
3
|
Sanderson A, Cescon C, Martinez-Valdes E, Rushton A, Heneghan NR, Kuithan P, Barbero M, Falla D. Reduced variability of erector spinae activity in people with chronic low back pain when performing a functional 3D lifting task. J Electromyogr Kinesiol 2024; 78:102917. [PMID: 39111070 DOI: 10.1016/j.jelekin.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Chronic low back pain (LBP) is a leading cause of disability, which is exacerbated in some by repeated lifting. Electromyography (EMG) assessments of isolated erector spinae (ES) regions during lifting identified conflicting results. Here, high-density EMG comprehensively assesses the lumbar and thoracolumbar ES activity in people with and without LBP performing a multiplanar lifting task. METHODS Four high-density EMG grids (two bilaterally) and reflective markers were affixed over the ES and trunk to record muscle activity and trunk kinematics respectively. The task involved cyclical lifting of a 5 kg box for ∼7 min from a central shelf to five peripheral shelves, returning to the first between movements, while monitoring perceived exertion. RESULTS Fourteen LBP (26.9 ± 11.1 years) and 15 control participants (32.1 ± 14.6 years) completed the study. LBP participants used a strategy characterised by less diffuse and more cranially-focussed ES activity (P < 0.05). LBP participants also exhibited less variation in ES activity distribution between sides during movements distal to the central shelf (P < 0.05). There were few consistent differences in kinematics, but LBP participants reported greater exertion (P < 0.05). CONCLUSION In the presence of mild LBP, participants used a less variable motor strategy, with less diffuse and more cranially-focussed ES activity; this motor strategy occurred concomitantly with increased exertion while completing this dynamic task.
Collapse
Affiliation(s)
- A Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK; Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - C Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
| | - E Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - A Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - N R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - P Kuithan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - M Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
| | - D Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Cardoso F, Cardoso R, Fonseca P, Rios M, Vilas-Boas JP, Pinho JC, Pyne DB, Fernandes RJ. Changing the Mandibular Position in Rowing: A Brief Report of a World-Class Rower. J Funct Morphol Kinesiol 2024; 9:153. [PMID: 39311261 PMCID: PMC11417811 DOI: 10.3390/jfmk9030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
We investigated the acute biophysical responses of changing the mandibular position during a rowing incremental protocol. A World-class 37-year-old male rower performed two 7 × 3 min ergometer rowing trials, once with no intraoral splint (control) and the other with a mandibular forward repositioning splint (splint condition). Ventilatory, kinematics and body electromyography were evaluated and compared between trials (paired samples t-test, p ≤ 0.05). Under the splint condition, oxygen uptake was lower, particularly at higher exercise intensities (67.3 ± 2.3 vs. 70.9 ± 1.5 mL·kg-1·min-1), and ventilation increased during specific rowing protocol steps (1st-4th and 6th). Wearing the splint condition led to changes in rowing technique, including a slower rowing frequency ([18-30] vs. [19-32] cycles·min-1) and a longer propulsive movement ([1.58-1.52] vs. [1.56-1.50] m) than the control condition. The splint condition also had a faster propulsive phase and a prolonged recovery period than the control condition. The splint reduced peak and mean upper body muscle activation, contrasting with an increase in lower body muscle activity, and generated an energetic benefit by reducing exercise cost and increasing rowing economy compared to the control condition. Changing the mandibular position benefited a World-class rower, supporting the potential of wearing an intraoral splint in high-level sports, particularly in rowing.
Collapse
Affiliation(s)
- Filipa Cardoso
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (R.C.); (M.R.); (J.P.V.-B.); (R.J.F.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| | - Ricardo Cardoso
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (R.C.); (M.R.); (J.P.V.-B.); (R.J.F.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| | - Pedro Fonseca
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| | - Manoel Rios
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (R.C.); (M.R.); (J.P.V.-B.); (R.J.F.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| | - João Paulo Vilas-Boas
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (R.C.); (M.R.); (J.P.V.-B.); (R.J.F.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| | - João C. Pinho
- Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - David B. Pyne
- Research Institute for Sport & Exercise, University of Canberra, Canberra 2617, Australia;
| | - Ricardo J. Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (R.C.); (M.R.); (J.P.V.-B.); (R.J.F.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
| |
Collapse
|
5
|
Corvini G, Arvanitidis M, Falla D, Conforto S. Novel Metrics for High-Density sEMG Analysis in the Time-Space Domain During Sustained Isometric Contractions. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:760-768. [PMID: 39246451 PMCID: PMC11379446 DOI: 10.1109/ojemb.2024.3449548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Goal: This study introduces a novel approach to examine the temporal-spatial information derived from High-Density surface Electromyography (HD-sEMG). By integrating and adapting postural control parameters into a framework for the analysis of myoelectrical activity, new metrics to evaluate muscle fatigue progression were proposed, investigating their ability to predict endurance time. Methods: Nine subjects performed a fatiguing isometric contraction of the lumbar erector spinae. Topographical amplitude maps were generated from two HD-sEMG grids. Once identified the coordinates of the muscle activity, novel metrics for quantifying the muscle spatial distribution over time were calculated. Results: Spatial metrics showed significant differences from beginning to end of the contraction, highlighting their ability of characterizing the neuromuscular adaptations in presence of fatigue. Additionally, linear regression models revealed strong correlations between these spatial metrics and endurance time. Conclusions: These innovative metrics can characterize the spatial distribution of muscle activity and predict the time of task failure.
Collapse
Affiliation(s)
- Giovanni Corvini
- Department of Industrial, Electronic and Mechanical EngineeringUniversity of Roma Tre 00154 Rome Italy
| | - Michail Arvanitidis
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of Birmingham Birmingham B15 2TT U.K
| | - Deborah Falla
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of Birmingham Birmingham B15 2TT U.K
| | - Silvia Conforto
- Department of Industrial, Electronic and Mechanical EngineeringUniversity of Roma Tre 00154 Rome Italy
| |
Collapse
|
6
|
Cady-McCrea CI, Lawlor MC, Rodenhouse TF, Puvanesarajah V, Mesfin A. The Rowing Spine: A Review of Biomechanics, Injury, and Treatment. World Neurosurg 2024; 187:156-161. [PMID: 38608819 DOI: 10.1016/j.wneu.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE We aimed to describe spinal biomechanics and injury patterns in rowing. METHODS In this systematic literature review, a Google and PubMed literature search was undertaken using keywords "rowing," "biomechanics," and "spine." RESULTS Relevant articles were reviewed and synthesized to describe biomechanics, injury patterns, treatment options, and techniques for injury prevention. CONCLUSIONS Rowing has increased in popularity throughout the United States. Up-to-date knowledge of rowing biomechanics and spinal injury patterns is necessary for prompt diagnosis and appropriate treatment of the injured rowing athlete.
Collapse
Affiliation(s)
- Clarke I Cady-McCrea
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark C Lawlor
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas F Rodenhouse
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Varun Puvanesarajah
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine, Washington, District of Columbia, USA.
| |
Collapse
|
7
|
Suo M, Zhou L, Wang J, Huang H, Zhang J, Sun T, Liu X, Chen X, Song C, Li Z. The Application of Surface Electromyography Technology in Evaluating Paraspinal Muscle Function. Diagnostics (Basel) 2024; 14:1086. [PMID: 38893614 PMCID: PMC11172025 DOI: 10.3390/diagnostics14111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Surface electromyography (sEMG) has emerged as a valuable tool for assessing muscle activity in various clinical and research settings. This review focuses on the application of sEMG specifically in the context of paraspinal muscles. The paraspinal muscles play a critical role in providing stability and facilitating movement of the spine. Dysfunctions or alterations in paraspinal muscle activity can lead to various musculoskeletal disorders and spinal pathologies. Therefore, understanding and quantifying paraspinal muscle activity is crucial for accurate diagnosis, treatment planning, and monitoring therapeutic interventions. This review discusses the clinical applications of sEMG in paraspinal muscles, including the assessment of low back pain, spinal disorders, and rehabilitation interventions. It explores how sEMG can aid in diagnosing the potential causes of low back pain and monitoring the effectiveness of physical therapy, spinal manipulative therapy, and exercise protocols. It also discusses emerging technologies and advancements in sEMG techniques that aim to enhance the accuracy and reliability of paraspinal muscle assessment. In summary, the application of sEMG in paraspinal muscles provides valuable insights into muscle function, dysfunction, and therapeutic interventions. By examining the literature on sEMG in paraspinal muscles, this review offers a comprehensive understanding of the current state of research, identifies knowledge gaps, and suggests future directions for optimizing the use of sEMG in assessing paraspinal muscle activity.
Collapse
Affiliation(s)
- Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Lina Zhou
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chunli Song
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (M.S.); (J.W.); (H.H.); (J.Z.); (T.S.); (X.L.)
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian 116000, China
| |
Collapse
|
8
|
Robinault L, Niazi IK, Kumari N, Amjad I, Menard V, Haavik H. Non-Specific Low Back Pain: An Inductive Exploratory Analysis through Factor Analysis and Deep Learning for Better Clustering. Brain Sci 2023; 13:946. [PMID: 37371424 DOI: 10.3390/brainsci13060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Non-specific low back pain (NSLBP) is a significant and pervasive public health issue in contemporary society. Despite the widespread prevalence of NSLBP, our understanding of its underlying causes, as well as our capacity to provide effective treatments, remains limited due to the high diversity in the population that does not respond to generic treatments. Clustering the NSLBP population based on shared characteristics offers a potential solution for developing personalized interventions. However, the complexity of NSLBP and the reliance on subjective categorical data in previous attempts present challenges in achieving reliable and clinically meaningful clusters. This study aims to explore the influence and importance of objective, continuous variables related to NSLBP and how to use these variables effectively to facilitate the clustering of NSLBP patients into meaningful subgroups. Data were acquired from 46 subjects who performed six simple movement tasks (back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, trunk rotation right, and trunk rotation left) at two different speeds (maximum and preferred). High-density electromyography (HD EMG) data from the lower back region were acquired, jointly with motion capture data, using passive reflective markers on the subject's body and clusters of markers on the subject's spine. An exploratory analysis was conducted using a deep neural network and factor analysis. Based on selected variables, various models were trained to classify individuals as healthy or having NSLBP in order to assess the importance of different variables. The models were trained using different subsets of data, including all variables, only anthropometric data (e.g., age, BMI, height, weight, and sex), only biomechanical data (e.g., shoulder and lower back movement), only neuromuscular data (e.g., HD EMG activity), or only balance-related data. The models achieved high accuracy in categorizing individuals as healthy or having NSLBP (full model: 93.30%, anthropometric model: 94.40%, biomechanical model: 84.47%, neuromuscular model: 88.07%, and balance model: 74.73%). Factor analysis revealed that individuals with NSLBP exhibited different movement patterns to healthy individuals, characterized by slower and more rigid movements. Anthropometric variables (age, sex, and BMI) were significantly correlated with NSLBP components. In conclusion, different data types, such as body measurements, movement patterns, and neuromuscular activity, can provide valuable information for identifying individuals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial to investigate the main domains influencing its prognosis as a cohesive unit rather than studying them in isolation. Simplifying the conditions for acquiring dynamic data is recommended to reduce data complexity, and using back flexion and trunk rotation as effective options should be further explored.
Collapse
Affiliation(s)
- Lucien Robinault
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Rehabilitation and Allied Health Sciences and Department of Biomedical Engineering, Riphah International University, Islamabad 46000, Pakistan
| | - Vincent Menard
- M2S Laboratory, ENS Rennes, University of Rennes 2, 35065 Rennes, France
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| |
Collapse
|
9
|
Yamashita M, Ishida T, Osuka S, Watanabe K, Samukawa M, Kasahara S, Kondo E, Tohyama H. Trunk Muscle Activities during Ergometer Rowing in Rowers with and without Low Back Pain. J Sports Sci Med 2023; 22:338-344. [PMID: 37293422 PMCID: PMC10245001 DOI: 10.52082/jssm.2023.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
This study aimed to determine the differences in trunk muscle activity during rowing at maximal effort between rowers with and without low back pain (LBP). Ten rowers with LBP and 12 rowers without LBP were enrolled in this study. All rowers performed a 500-m trial using a rowing ergometer at maximal effort. The amplitudes of the activities of the thoracic erector spinae (TES), lumbar erector spinae (LES), latissimus dorsi (LD), rectus abdominis (RA), and external oblique (EO) muscles were analyzed using a wireless surface electromyography (EMG) system. EMG data at each stroke were converted into 10-time series data by recording averages at every 10% in the 100% stroke cycle and normalized by maximum voluntary isometric contraction in each muscle. Two-way repeated measures analysis of variance was performed. Significant interactions were found in the activities of the TES and LES (P < 0.001 and P = 0.047, respectively). In the post hoc test, the TES activity in the LBP group was significantly higher than that in the control group at the 10% to 20% and 20% to 30% stroke cycles (P = 0.013 and P = 0.007, respectively). The LES activity in the LBP group was significantly higher than that in the control group at the 0% to 10% stroke cycle (P < 0.001). There was a main group effect on the LD activity, with significantly higher activity in the LBP group than in the control group (P = 0.023). There were no significant interactions or main effects in the EO and RA activities between the groups. The present study showed that rowers with LBP compared with those without LBP exhibited significantly higher TES, LES, and LD muscle activities. This indicates that rowers with LBP exhibit excessive back muscle activity during rowing under maximal effort.
Collapse
Affiliation(s)
- Momoko Yamashita
- Department of Sports Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoya Ishida
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Osuka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kentaro Watanabe
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Mina Samukawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Kasahara
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiji Kondo
- Department of Sports Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Harukazu Tohyama
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Trunk stability in fatiguing frequency-dependent lifting activities. Gait Posture 2023; 102:72-79. [PMID: 36934473 DOI: 10.1016/j.gaitpost.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Work-related low-back disorders (WLBDs) are one of the most frequent and costly musculoskeletal conditions. It has been showed that WLBDs may occur when intervertebral or torso equilibrium is altered by a biomechanical perturbations or neuromuscular control error. The capacity to react to such disturbances is heavily determined by the spinal stability, provided by active and passive tissues and controlled by the central nervous system. RESEARCH QUESTION This study aims to investigate trunk stability through the Lyapunov's maximum exponent during repetitive liftings in relation to risk level, as well as to evaluate its ability to discriminate these risk levels. METHODS Fifteen healthy volunteers performed fatiguing lifting tasks at three different frequencies corresponding to low, medium, and high risk levels according to the National Institute for Occupational Safety and Health (NIOSH) equation. We investigated changes in spinal stability during fatiguing lifting tasks at different risk levels using the maximum Lyapunov's index (λMax) computed from trunk accelerations recorded by placing three IMUs at pelvis, lower and upper spine levels. A two-way repeated-measures ANOVA was performed to determine if there was any significant effect on λMax among the three risk levels and the time (start, mid, and end of the task). Additionally, we examined the Pearson's correlation of λMax with the trunk muscle co-activation, computed from trunk sEMG. RESULTS Our findings show an increase in trunk stability with increasing risk level and as the lifting task progressed over time. A negative correlation between λMax and trunk co-activation was observed which illustrates that the increase in spinal stability could be partially attributed to increased trunk muscle co-activation. SIGNIFICANCE This study highlights the possibility of generating stability measures from kinematic data as risk assessment features in fatiguing tasks which may prove useful to detect the risk of developing work-related low back pain disorders and allow the implementation of early ergonomic interventions.
Collapse
|
11
|
Athy V, Hach S, Anderson H, Mason J. Examining the Peer-Reviewed Published Literature Regarding Low Back Pain in Rowing: A Scoping Review. Int J Sports Phys Ther 2023; 18:55-69. [PMID: 36793564 PMCID: PMC9897042 DOI: 10.26603/001c.67836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background Low back pain (LBP) is highly prevalent in the rowing population. The body of existing research variously investigates risk factors, prevention, and treatment methods. Purpose The purpose of this scoping review was to explore the breadth and depth of the LBP literature in rowing and to identify areas for future research. Study Design Scoping review. Methods PubMed, Ebsco and ScienceDirect were searched from inception to November 1, 2020. Only published, peer-reviewed, primary, and secondary data pertaining to LBP in rowing were included for this study. Arksey and O'Malley's framework for guided data synthesis was used. Reporting quality of a subsection of the data was assessed using the STROBE tool. Results Following the removal of duplicates and abstract screening, a set of 78 studies were included and divided into the following categories: epidemiology, biomechanics, biopsychosocial, and miscellaneous. The incidence and prevalence of LBP in rowers were well mapped. The biomechanical literature covered a wide range of investigations with limited cohesion. Significant risk factors for LBP in rowers included back pain history and prolonged ergometer use. Conclusion A lack of consistent definitions within the studies caused fragmentation of the literature. There was good evidence for prolonged ergometer use and history of LBP to constitute risk factors and this may assist future LBP preventative action. Methodological issues such as small sample size and barriers to injury reporting increased heterogeneity and decreased data quality. Further exploration is required to determine the mechanism of LBP in rowers through research with larger samples.
Collapse
|
12
|
Reliability of high-density surface electromyography for assessing characteristics of the thoracic erector spinae during static and dynamic tasks. J Electromyogr Kinesiol 2022; 67:102703. [PMID: 36096034 DOI: 10.1016/j.jelekin.2022.102703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks. METHODS Twenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement. RESULTS Good-to-excellent intra-session reliability was found for all parameters and tasks (ICC: 0.79-0.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: 0.66-0.98), while reliability of the barycentre was influenced by the direction of the movements. CONCLUSION RMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability.
Collapse
|
13
|
People with chronic low back pain display spatial alterations in high-density surface EMG-torque oscillations. Sci Rep 2022; 12:15178. [PMID: 36071134 PMCID: PMC9452584 DOI: 10.1038/s41598-022-19516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
We quantified the relationship between spatial oscillations in surface electromyographic (sEMG) activity and trunk-extension torque in individuals with and without chronic low back pain (CLBP), during two submaximal isometric lumbar extension tasks at 20% and 50% of their maximal voluntary torque. High-density sEMG (HDsEMG) signals were recorded from the lumbar erector spinae (ES) with a 64-electrode grid, and torque signals were recorded with an isokinetic dynamometer. Coherence and cross-correlation analyses were applied between the filtered interference HDsEMG and torque signals for each submaximal contraction. Principal component analysis was used to reduce dimensionality of HDsEMG data and improve the HDsEMG-based torque estimation. sEMG-torque coherence was quantified in the δ(0–5 Hz) frequency bandwidth. Regional differences in sEMG-torque coherence were also evaluated by creating topographical coherence maps. sEMG-torque coherence in the δ band and sEMG-torque cross-correlation increased with the increase in torque in the controls but not in the CLBP group (p = 0.018, p = 0.030 respectively). As torque increased, the CLBP group increased sEMG-torque coherence in more cranial ES regions, while the opposite was observed for the controls (p = 0.043). Individuals with CLBP show reductions in sEMG-torque relationships possibly due to the use of compensatory strategies and regional adjustments of ES-sEMG oscillatory activity.
Collapse
|
14
|
Belavy DL, Armbrecht G, Albracht K, Brisby H, Falla D, Scheuring R, Sovelius R, Wilke HJ, Rennerfelt K, Martinez-Valdes E, Arvanitidis M, Goell F, Braunstein B, Kaczorowski S, Karner V, Arora NK. Cervical spine and muscle adaptation after spaceflight and relationship to herniation risk: protocol from 'Cervical in Space' trial. BMC Musculoskelet Disord 2022; 23:772. [PMID: 35964076 PMCID: PMC9375326 DOI: 10.1186/s12891-022-05684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Astronauts have a higher risk of cervical intervertebral disc herniation. Several mechanisms have been attributed as causative factors for this increased risk. However, most of the previous studies have examined potential causal factors for lumbar intervertebral disc herniation only. Hence, we aim to conduct a study to identify the various changes in the cervical spine that lead to an increased risk of cervical disc herniation after spaceflight. Methods A cohort study with astronauts will be conducted. The data collection will involve four main components: a) Magnetic resonance imaging (MRI); b) cervical 3D kinematics; c) an Integrated Protocol consisting of maximal and submaximal voluntary contractions of the neck muscles, endurance testing of the neck muscles, neck muscle fatigue testing and questionnaires; and d) dual energy X-ray absorptiometry (DXA) examination. Measurements will be conducted at several time points before and after astronauts visit the International Space Station. The main outcomes of interest are adaptations in the cervical discs, muscles and bones. Discussion Astronauts are at higher risk of cervical disc herniation, but contributing factors remain unclear. The results of this study will inform future preventive measures for astronauts and will also contribute to the understanding of intervertebral disc herniation risk in the cervical spine for people on Earth. In addition, we anticipate deeper insight into the aetiology of neck pain with this research project. Trial registration German Clinical Trials Register, DRKS00026777. Registered on 08 October 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05684-0.
Collapse
Affiliation(s)
- Daniel L Belavy
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany.
| | - Gabriele Armbrecht
- Center for Muscle and Bone Research, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany.,Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Helena Brisby
- Department of Orthopedic Surgery, Sahlgrenska University Hospital, 415 45, Göteborg, Sweden
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Richard Scheuring
- NASA Johnson Space Center, 2101 NASA Parkway SD4, Houston, TX, 77058, USA
| | - Roope Sovelius
- Centre for Military Medicine, Satakunta Air Command, P.O.Box 761, 33101, Tampere, Finland
| | | | - Kajsa Rennerfelt
- Orthopaedics and Spine Surgery, Sahlgrenska University Hospital, Bruna Stråket 11B, Göteborg, 413 45, Sweden
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Fabian Goell
- Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Bjoern Braunstein
- Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Svenja Kaczorowski
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| | - Vera Karner
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| | - Nitin Kumar Arora
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| |
Collapse
|
15
|
Liechti M, von Arx M, Eichelberger P, Bangerter C, Meier ML, Schmid S. Spatial distribution of erector spinae activity is related to task-specific pain-related fear during a repetitive object lifting task. J Electromyogr Kinesiol 2022; 65:102678. [DOI: 10.1016/j.jelekin.2022.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022] Open
|
16
|
Schäfer R, Schäfer H, Platen P. Perturbation-based trunk stabilization training in elite rowers: A pilot study. PLoS One 2022; 17:e0268699. [PMID: 35587490 PMCID: PMC9119454 DOI: 10.1371/journal.pone.0268699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction
Low back pain is a major health issue in elite rowers. High training volume, frequent flexion movements of the lower spine and rotational movement in sweep rowing contribute to increased spinal strain and neuropathological patterns. Perturbation-based trunk stabilization training (PTT) may be effective to treat neuromuscular deficits and low back pain.
Methods
All boat classes (8+, 4+/-, 2-) of the male German national sweep rowing team participated in this non-randomized parallel group study. We included 26 athletes (PTT: n = 12, control group: n = 14) in our analysis. Physical and Sports therapists conducted 16 individualized PTT sessions á 30–40 minutes in 10 weeks, while the control group kept the usual routines. We collected data before and after intervention on back pain intensity and disability, maximum isometric trunk extension and flexion, jump height and postural sway of single-leg stance.
Results
We found less disability (5.3 points, 95% CI [0.4, 10.1], g = 0.42) for PTT compared to control. Pain intensity decreased similar in both groups (-14.4 and -15.4 points), yielding an inconclusive between-group effect (95% CI [-16.3, 14.3]). Postural sway, strength and jump height tend to have no between- and within-group effects.
Conclusion
Perturbation-based trunk stabilization training is possibly effective to improve the physical function of the lower back in elite rowers.
Collapse
Affiliation(s)
- Robin Schäfer
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| | - Hendrik Schäfer
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Petra Platen
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Oshikawa T, Takaki N, Nakamura K, Kubota R, Adachi G, Akuzawa H, Sekine C, Kaneoka K. Change in the activity of trunk and lower limb muscles during 2000-m rowing. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:45-50. [PMID: 35466145 DOI: 10.2152/jmi.69.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This study aimed to clarify the changes in the activity of the trunk and lower limb muscles during 2000-m rowing. Ten male rowers performed a 2000-m race simulation on a rowing ergometer. Electromyography results of the abdominal muscles, back muscles, gluteus maximus (GMax), biceps femoris (BF), and rectus femoris (RF) were recorded. The electromyographic activity during the three strokes after the start (initial stage), at 1000m (middle stage), and before the end (final stage) were analyzed. From the handle position, the rowing motion was divided into five phases (early-drive, middle-drive, late-drive, early-recovery, and late-recovery). The peak activities of the abdominal muscles, back muscles, GMax, and BF in each stroke of the rowing motion were delayed at the middle and final stages compared to the initial stage (P<0.05). The peak activity of the RF was observed in the late-drive phase at the initial stage, whereas a high RF activity was observed in the middle-drive phase at the middle and final stages (P<0.05). Considering the results of the activity of the back muscles and RF, RF muscular endurance enhancement may lead to a decrease in the load on the back muscles and help prevent muscular low back pain in rowers. J. Med. Invest. 69 : 45-50, February, 2022.
Collapse
Affiliation(s)
- Tomoki Oshikawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Norifumi Takaki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Koji Nakamura
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Ren Kubota
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Gen Adachi
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan.,Baseball & Sports Clinic, Kanagawa, Japan
| | - Hiroshi Akuzawa
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | - Chie Sekine
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Koji Kaneoka
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
18
|
Benedikter C, Abrar DB, Konieczny M, Schleich C, Bittersohl B. Patterns of Intervertebral Disk Alteration in Asymptomatic Elite Rowers: A T2* MRI Mapping Study. Orthop J Sports Med 2022; 10:23259671221088572. [PMID: 35464905 PMCID: PMC9019338 DOI: 10.1177/23259671221088572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Repetitive loading of the back puts elite rowers at risk for acute and chronic back injuries. Hypothesis: That asymptomatic elite rowers would demonstrate characteristic intervertebral disk (IVD) alterations on T2* magnetic resonance imaging (MRI) mapping compared with asymptomatic nonrowers. Study Design: Cross-sectional study; Level of evidence, 3. Methods: This study included 20 asymptomatic elite rowers (mean age, 23.4 ± 3.03 years; 9 women, 11 men) studied at 2 different times, once before (t1) and once after (t2) the competition phase. MRI including T2* mapping was performed on a 3-T scanner. The authors derived normative T2* data from a previous study on 40 asymptomatic volunteers (20 men, 20 women) who were not competitive rowers; based on complete T2* data sets, 37 controls were included. T2* values were compared between groups in 4 lumbar IVDs, and midsagittal T2* values were compared in 5 zones: anterior annulus fibrosus (AF), anterior nucleus pulposus (NP), central NP, posterior NP, and posterior AF. The Pfirrmann grade was used for morphological assessment of disk degeneration. Statistical analysis was conducted using the Mann-Whitney U test, Wilcoxon matched-pairs test, and Spearman rank correlation coefficient. Results: Lower T2* values were noted in the rower group compared with the controls (37.08 ± 33.63 vs 45.59 ± 35.73 ms, respectively; P < .001). The intersegmental comparison revealed lower mean T2* values among rowers (P ≤ .027 for all). The interzonal comparison indicated significantly lower mean T2* values for the rowers in all zones except for the anterior NP (P ≤ .008 for all). Lower mean T2* values were observed for the rowers at t1 versus t2 (39.25 ± 36.19 vs 43.97 ± 38.67 ms, respectively; P = .008). The authors noted a higher level of IVD damage according to Pfirrmann assessment in the rower cohort (P < .001); the Pfirrmann grade distributions of rowers versus controls, respectively, were as follows: 51.3% versus 73.7% (grade 1), 20.5% versus 19.5% (grade 2), 21.8% versus 6.8% (grade 3), 5.1% versus 0% (grade 4), and 1.3% versus 0% (grade 5). The authors also noted a correlation between low T2* and high Pfirrmann grade at t1 (r =–0.48; P < .001) and t2 (r =–0.71; P < .001). Conclusion: The cohort of elite rowers revealed more degenerative IVD changes compared with controls. The T2* values suggest that repetitive loading of the spine has demonstrable short-term and possibly permanent effects on the lumbar IVD.
Collapse
Affiliation(s)
- Chiara Benedikter
- Department of Orthopedics and Trauma Surgery, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Markus Konieczny
- Department of Orthopedics and Trauma Surgery, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics and Trauma Surgery, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
19
|
Marineau Belanger E, Boon DM, Descarreaux M, Abboud J. The effect of low back pain on neuromuscular control in cyclists. J Sports Sci 2022; 40:1255-1264. [PMID: 35389326 DOI: 10.1080/02640414.2022.2061819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was designed to identify neuromuscular adaptations of low back pain (LBP) cyclists , and the impact of a cycling effort on spinal shrinkage. Forty-eight trained cyclists rode their road bike on a smart trainer for 1-hour. Surface electromyography (EMG) recorded muscle activity of the lumbar erector spinae (LES), 3D motion analysis system recorded kinematic of the trunk, and stadiometry measured spinal height. Statistical comparisons were made using repeated measure ANOVAs. The LBP group presented increase in pain levels throughout the effort (p < 0.001). A significant group difference was only observed for the thoracic angle (p = 0.03), which was less flexed for LBP. The one-hour cycling effort (time effect) significantly increased the trunk flexion (p < 0.001) and thoracic flexion (p < 0.001) for both groups. Significant lower LES activation (35% less) was observed at the end of the effort as well as a decrease in spinal height (p = 0.01) for both groups. Neuromuscular adaptations to cycling effort is identified by a decrease in LES EMG amplitude and an increase flexion of the trunk. Adaptation to pain is seen by an increase in thoracic flexion. Despite these adaptations, LBP cyclists could not ride their bike pain-free.
Collapse
Affiliation(s)
- Emile Marineau Belanger
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Dan-Mihai Boon
- parcours neuroscience du mouvement, Université de Paris-Est CréteilFaculté de biologie-santé.,Institut Franco-Européen de Chiropraxie, Campus Paris, France
| | - Martin Descarreaux
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Jacques Abboud
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
20
|
Brice SM, Millett EL, Philippa B. The validity of using inertial measurement units to monitor the torso and pelvis sagittal plane motion of elite rowers. J Sports Sci 2022; 40:950-958. [PMID: 35199626 DOI: 10.1080/02640414.2022.2042146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In elite sport, inertial measurement units (IMUs) are being used increasingly to measure movement in-field. IMU data commonly sought are body segment angles as this gives insights into how technique can be altered to improve performance and reduce injury risk. The purpose of this was to assess the validity of IMU use in rowing and identify if IMUs are capable of detecting differences in sagittal torso and pelvis angles that result from changes in stroke rates. Eight elite female rowers participated. Four IMUs were positioned along the torso and over the pelvis of each athlete. Reflective markers surrounded each IMU which were used to compute gold-standard data. Maxima, minima, angle range and waveforms for ten strokes at rates of 20, 24, 28 and 32 strokes per minute were analysed. Root mean square errors as a percentage of angle range fell between 1.44% and 8.43%. In most cases when significant differences (p < 0.05) in the angles were detected between stroke rates, this was observed in both IMU and gold-standard angle data. These findings suggest that IMUs are valid for measuring torso and pelvis angles when rowing and are capable of detecting differences that result from changes in stroke rate.
Collapse
Affiliation(s)
- Sara M Brice
- Physical Sciences, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Emma L Millett
- Biomechanics, New South Wales Institute of Sport, Sydney, New South Wales, Australia.,Athletics Australia, Melbourne, Australia
| | - Bronson Philippa
- College of Science and Engineering, James Cook University, Queensland, Cairns, Australia
| |
Collapse
|
21
|
Wedatilake T, Palmer A, Fernquest S, Redgrave A, Arnold L, Kluzek S, McGregor A, Teh J, Newton J, Glyn-Jones S. Association between hip joint impingement and lumbar disc disease in elite rowers. BMJ Open Sport Exerc Med 2021; 7:e001063. [PMID: 34790361 PMCID: PMC8565560 DOI: 10.1136/bmjsem-2021-001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives Lumbar disc disease is a known cause of back pain. Increasingly it is thought that cam morphology of the hip may have a causal role in development of lumbar disc disease. The aim of this study was to describe the morphology of the hip and investigate the association of cam morphology with lumbar disc disease observed on MRI in elite rowers. Methods Cross-sectional observational study of 20 elite rowers (12 male, 8 female, mean age 24.45, SD 2.1). Assessment included clinical examination, questionnaires, 3T MRI scans of the hips and lumbar spine. Alpha angle of the hips and Pfirrmann score of lumbar discs were measured. Results 85% of rowers had a cam morphology in at least one hip. Alpha angle was greatest at the 1 o’clock position ((bone 70.9 (SD 16.9), cartilage 71.4 (16.3)). 95% of the group were noted to have labral tears, but only 50% of the group had history of groin pain. 85% of rowers had at least one disc with a Pfirrmann score of 3 or more and 95% had a history of back pain. A positive correlation was observed between the alpha angle and radiological degenerative disc disease (correlation coefficient=3.13, p=0.012). A negative correlation was observed between hip joint internal rotation and radiological degenerative disc disease (correlation coefficient=−2.60, p=0.018). Conclusions Rowers have a high prevalence of labral tears, cam morphology and lumbar disc disease. There is a possible association between cam morphology and radiological lumbar degenerative disc disease, however, further investigation is required.
Collapse
Affiliation(s)
- Thamindu Wedatilake
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,England and Wales Cricket Board, London, UK
| | - Antony Palmer
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,Royal National Orthopaedic Hospital Stanmore, Stanmore, UK
| | - S Fernquest
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Liz Arnold
- British Rowing, London, UK.,English Institute of Sport, Bisham, UK
| | - Stefan Kluzek
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,Department of SEM, University of Nottingham School of Medicine, Nottingham, UK
| | | | - James Teh
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julia Newton
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sion Glyn-Jones
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
22
|
Varrecchia T, Ranavolo A, Conforto S, De Nunzio AM, Arvanitidis M, Draicchio F, Falla D. Bipolar versus high-density surface electromyography for evaluating risk in fatiguing frequency-dependent lifting activities. APPLIED ERGONOMICS 2021; 95:103456. [PMID: 33984582 DOI: 10.1016/j.apergo.2021.103456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Workers often develop low back pain due to manually lifting heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk in lifting activities. This study aims to verify the hypothesis that high-density surface electromyography (HDsEMG) allows an optimized discrimination of risk levels associated with different fatiguing lifting conditions compared to traditional bipolar sEMG. 15 participants performed three lifting tasks with a progressively increasing lifting index (LI) each lasting 15 min. Erector spinae (ES) activity was recorded using both bipolar and HDsEMG systems. The amplitude of both bipolar and HDsEMG can significantly discriminate each pair of LI. HDsEMG data could discriminate across the different LIs starting from the fourth minute of the task while bipolar sEMG could only do so towards the end. The higher discriminative power of HDsEMG data across the lifting tasks makes such methodology a valuable tool to be used to monitor fatigue while lifting and could extend the possibilities offered by currently available instrumental-based tools.
Collapse
Affiliation(s)
- Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy; Department of Engineering, Roma Tre University, Via Vito Volterra 62, Roma, Lazio, Italy.
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy.
| | - Silvia Conforto
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, Roma, Lazio, Italy.
| | - Alessandro Marco De Nunzio
- LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, Differdange, 4671, Luxembourg; Luxembourg Health & Sport Sciences Research Institute A.s.b.l., 50, Avenue du Parc des Sports, Differdange, 4671, Luxembourg.
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B152TT, United Kingdom.
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy.
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B152TT, United Kingdom.
| |
Collapse
|
23
|
Serafino F, Trucco M, Occhionero A, Cerone GL, Chiarotto A, Vieira T, Gallina A. Understanding regional activation of thoraco-lumbar muscles in chronic low back pain and its relationship to clinically relevant domains. BMC Musculoskelet Disord 2021; 22:432. [PMID: 33975570 PMCID: PMC8114502 DOI: 10.1186/s12891-021-04287-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered regional activation of the lumbar extensors has been previously observed in individuals with low back pain (LBP) performing high-effort and fatiguing tasks. It is currently unknown whether similar alterations can be observed during low-effort functional tasks. Similarly, previous studies did not investigate whether side differences in regional activation are present in individuals with LBP. Finally, there is limited evidence of whether the extent of the alteration of regional activation is associated with clinical factors. Therefore, the aim of this study was to investigate whether individuals with LBP exhibit asymmetric regional activation of the thoraco-lumbar extensor muscles during functional tasks, and if the extent of neuromuscular control alteration is associated with clinical and psychosocial outcome domains. METHODS 21 participants with and 21 without LBP performed five functional tasks (gait, sit-to-stand, forward trunk flexion, shoulder flexion and anterior pelvic tilt). The spatial distribution of activation of the thoraco-lumbar extensor muscles was assessed bilaterally using high-density electromyography. For each side, the distribution of electromyographic (EMG) amplitude was characterized in terms of intensity, location and size. Indices of asymmetry were calculated from these features and comparisons between groups and tasks were performed using ANOVA. The features that significantly differed between groups were correlated with self-reported measures of pain intensity and other outcome domains. RESULTS Indices of asymmetry did not differ between participants with and without LBP (p > 0.11). The cranio-caudal location of the activation differed between tasks (p < 0.05), but not between groups (p = 0.64). Participants with LBP showed reduced EMG amplitude during anterior pelvic tilt and loading response phase during gait (both p < 0.05). Pearson correlation revealed that greater pain intensity was associated with lower EMG amplitude for both tasks (R<-0.5, p < 0.05). CONCLUSIONS Despite clear differences between tasks, individuals with and without LBP exhibited similar distributions of EMG amplitude during low-effort functional activities, both within and between sides. However, individuals with LBP demonstrated lower activation of the thoraco-lumbar muscles during gait and anterior pelvic tilt, especially those reporting higher pain intensity. These results have implications in the development or refinement of assessment and intervention strategies focusing on motor control in patients with chronic LBP.
Collapse
Affiliation(s)
- Francesca Serafino
- Presidio Sanitario San Camillo, Torino, Italy.,Montecatone Rehabilitation Institute, Imola, BO, Italy
| | - Marco Trucco
- Presidio Sanitario San Camillo, Torino, Italy.,Degree course of Physiotherapy, Universitá degli Studi di Torino, Torino, Italy
| | | | - Giacinto Luigi Cerone
- Laboratory for the Engineering of the Neuromuscular System, Politecnico of Torino, Torino, Italy.,PoliTo BIO Med Lab, Politecnico di Torino, Torino, Italy
| | - Alessandro Chiarotto
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.,Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Taian Vieira
- Laboratory for the Engineering of the Neuromuscular System, Politecnico of Torino, Torino, Italy.,PoliTo BIO Med Lab, Politecnico di Torino, Torino, Italy
| | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
24
|
Alsubaie AM, Martinez-Valdes E, De Nunzio AM, Falla D. Trunk control during repetitive sagittal movements following a real-time tracking task in people with chronic low back pain. J Electromyogr Kinesiol 2021; 57:102533. [PMID: 33621756 DOI: 10.1016/j.jelekin.2021.102533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Precision of trunk movement has commonly been examined by testing relocation accuracy rather than evaluating accuracy of tracking dynamic movement. In this study we used a 3-D motion capture system to provide a novel real-time tracking task to assess trunk motor control at varying movement speeds between people with and without chronic non-specific low back pain (LBP). Eleven asymptomatic volunteers and 15 participants with chronic non-specific LBP performed 12 continuous cycles of trunk flexion-extension following real time visual feedback, during which, trunk motion was measured using eight optoelectronic infrared cameras. Significant time differences between the feedback and actual trunk motion were found between groups (P = 0.001). Both groups had similar variability of tracking accuracy when following the feedback (P > 0.05). However, tracking variability at a slow speed correlated (P = 0.03; r = 0.55) with the Fear-Avoidance Beliefs Questionnaire (FABQ) scores in those with LBP. This study shows that both asymptomatic people and individuals with LBP displayed anticipatory behaviour, however, the response of those with LBP was consistently delayed in tracking the visual feedback compared to the asymptomatic group. Additionally, the extent of variability of tracking accuracy over repeated tracking cycles was associated with the degree of fear of movement in people with LBP.
Collapse
Affiliation(s)
- A M Alsubaie
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - E Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - A M De Nunzio
- LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, 4671, Differdange, Luxembourg
| | - D Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| |
Collapse
|
25
|
Nugent FJ, Vinther A, McGregor A, Thornton JS, Wilkie K, Wilson F. The relationship between rowing-related low back pain and rowing biomechanics: a systematic review. Br J Sports Med 2021; 55:bjsports-2020-102533. [PMID: 33397675 DOI: 10.1136/bjsports-2020-102533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low back pain (LBP) is common in rowers. Understanding rowing biomechanics may help facilitate prevention and improve rehabilitation. OBJECTIVES To define the kinematics and muscle activity of rowers and to compare with rowers with current or LBP history. DESIGN Systematic review. DATA SOURCES EMBASE, MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Web of Science and Scopus from inception to December 2019. Grey literature was searched. STUDY ELIGIBILITY CRITERIA Experimental and non-experimental designs. METHODS Primary outcomes were kinematics and muscle activity. Modified Quality Index (QI) checklist was used. RESULTS 22 studies were included (429 participants). Modified QI score had a mean of 16.7/28 points (range: 15-21). Thirteen studies investigated kinematics and nine investigated muscle activity. Rowers without LBP ('healthy') have distinct kinematics (neutral or anterior pelvic rotation at the catch, greater hip range of motion, flatter low back spinal position at the finish) and muscle activity (trunk extensor dominant with less flexor activity). Rowers with LBP had relatively greater posterior pelvic rotation at the catch, greater hip extension at the finish and less efficient trunk muscle activity. In both groups fatigue results in increased lumbar spine flexion at the catch, which is greater on the ergometer. There is insufficient evidence to recommend one ergometer type (fixed vs dynamic) over the other to avoid LBP. Trunk asymmetries are not associated with LBP in rowers. CONCLUSION Improving clinicians' and coaches' understanding of safe and effective rowing biomechanics, particularly of the spine, pelvis and hips may be an important strategy in reducing incidence and burden of LBP.
Collapse
Affiliation(s)
- Frank James Nugent
- Physical Education and Sport Sciences Department, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Sport and Human Performance Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Anders Vinther
- Department of Physiotherapy and Occupational Therapy, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alison McGregor
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jane S Thornton
- Western Centre for Public Health and Family Medicine, University of Western Ontario, London, Ontario, Canada
| | - Kellie Wilkie
- Bodysystem Physiotherapy, Hobart, Tasmania, Australia
| | - Fiona Wilson
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Spatial distribution of lumbar erector spinae muscle activity in individuals with and without chronic low back pain during a dynamic isokinetic fatiguing task. Clin Biomech (Bristol, Avon) 2021; 81:105214. [PMID: 33189454 DOI: 10.1016/j.clinbiomech.2020.105214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Individuals with chronic low back pain (CLBP) commonly present with increased trunk muscle fatigability; typically assessed as reduced time to task failure during non-functional isometric contractions. Less is known about the specific neuromuscular responses of individuals with CLBP during dynamic fatiguing tasks. We investigate the regional alteration in muscle activation and peak torque exertion during a dynamic isokinetic fatiguing task in individuals with and without CLBP. METHODS Electromyography (EMG) was acquired from the lumbar erector spinae unilaterally of 11 asymptomatic controls and 12 individuals with CLBP, using high-density EMG (13 × 5 grid of electrodes). Seated in an isokinetic dynamometer, participants performed continuous cyclic trunk flexion-extension at 60o/s until volitional exhaustion. FINDINGS Similar levels of muscle activation and number of repetitions were observed for both groups (p > 0.05). However, the CLBP group exerted lower levels of peak torque for both flexion and extension moments (p < 0.05). The centre of lumbar erector spinae activity was shifted cranially in the CLBP group throughout the task (p < 0.05), while the control participants showed a more homogenous distribution of muscle activity. INTERPRETATION People with CLBP displayed altered and potentially less efficient activation of their lumbar erector spinae during a dynamic fatiguing task. Future studies should consider using high-density EMG biofeedback to optimise the spatial activation of the paraspinal musculature in people with low back pain (LBP).
Collapse
|
27
|
Campanini I, Disselhorst-Klug C, Rymer WZ, Merletti R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front Neurol 2020; 11:934. [PMID: 32982942 PMCID: PMC7492208 DOI: 10.3389/fneur.2020.00934] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
This article addresses the potential clinical value of techniques based on surface electromyography (sEMG) in rehabilitation medicine with specific focus on neurorehabilitation. Applications in exercise and sport pathophysiology, in movement analysis, in ergonomics and occupational medicine, and in a number of related fields are also considered. The contrast between the extensive scientific literature in these fields and the limited clinical applications is discussed. The "barriers" between research findings and their application are very broad, and are longstanding, cultural, educational, and technical. Cultural barriers relate to the general acceptance and use of the concept of objective measurement in a clinical setting and its role in promoting Evidence Based Medicine. Wide differences between countries exist in appropriate training in the use of such quantitative measurements in general, and in electrical measurements in particular. These differences are manifest in training programs, in degrees granted, and in academic/research career opportunities. Educational barriers are related to the background in mathematics and physics for rehabilitation clinicians, leading to insufficient basic concepts of signal interpretation, as well as to the lack of a common language with rehabilitation engineers. Technical barriers are being overcome progressively, but progress is still impacted by the lack of user-friendly equipment, insufficient market demand, gadget-like devices, relatively high equipment price and a pervasive lack of interest by manufacturers. Despite the recommendations provided by the 20-year old EU project on "Surface EMG for Non-Invasive Assessment of Muscles (SENIAM)," real international standards are still missing and there is minimal international pressure for developing and applying such standards. The need for change in training and teaching is increasingly felt in the academic world, but is much less perceived in the health delivery system and clinical environments. The rapid technological progress in the fields of sensor and measurement technology (including sEMG), assistive devices, and robotic rehabilitation, has not been driven by clinical demands. Our assertion is that the most important and urgent interventions concern enhanced education, more effective technology transfer, and increased academic opportunities for physiotherapists, occupational therapists, and kinesiologists.
Collapse
Affiliation(s)
- Isabella Campanini
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, San Sebastiano Hospital, Correggio, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation & Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - William Z. Rymer
- Shirley Ryan Ability Lab, Single Motor Unit Laboratory, Chicago, IL, United States
| | - Roberto Merletti
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|
28
|
Falla D, Gallina A. New insights into pain-related changes in muscle activation revealed by high-density surface electromyography. J Electromyogr Kinesiol 2020; 52:102422. [DOI: 10.1016/j.jelekin.2020.102422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
|
29
|
Sanderson A, Cescon C, Heneghan NR, Kuithan P, Martinez-Valdes E, Rushton A, Barbero M, Falla D. People With Low Back Pain Display a Different Distribution of Erector Spinae Activity During a Singular Mono-Planar Lifting Task. Front Sports Act Living 2019; 1:65. [PMID: 33344988 PMCID: PMC7739704 DOI: 10.3389/fspor.2019.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the variation in muscle activity and movement in the lumbar and lumbothoracic region during a singular mono-planar lifting task, and how this is altered in individuals experiencing low back pain (LBP). Muscle activity from the lumbar and lumbothoracic erector spinae of 14 control and 11 LBP participants was recorded using four 13 × 5 high-density surface electromyography (HDEMG) grids. Root mean squared HDEMG signals were used to create spatial maps of the distribution of muscle activity. Three-dimensional kinematic data were recorded focusing on the relationship between lumbar and thoracic movements. In the task, participants lifted a 5 kg box from knee height to sternal height, and then returned the box to the starting position. The center of muscle activity for LBP participants was found to be systematically more cranial throughout the task compared to the control participants (P < 0.05). Participants with LBP also had lower signal entropy (P < 0.05) and lower absolute root mean squared values (P < 0.05). However, there were no differences between groups in kinematic variables, with no difference in contributions between lumbar and thoracic motion segments (P > 0.05). These results indicate that participants with LBP utilize an altered motor control strategy to complete a singular lifting task which is not reflected in their movement strategy. While no differences were identified between groups in the motion between lumbar and thoracic motion segments, participants with LBP utilized a less homogenous, less diffuse and more cranially focussed contraction of their erector spinae to complete the lifting movement. These results may have relevance for the persistence of LBP symptoms and the development of new treatments focussing on muscle retraining in LBP.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Kuithan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Murillo C, Martinez-Valdes E, Heneghan NR, Liew B, Rushton A, Sanderson A, Falla D. High-Density Electromyography Provides New Insights into the Flexion Relaxation Phenomenon in Individuals with Low Back Pain. Sci Rep 2019; 9:15938. [PMID: 31685948 PMCID: PMC6828973 DOI: 10.1038/s41598-019-52434-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/11/2019] [Indexed: 11/26/2022] Open
Abstract
Recent research using high-density electromyography (HDEMG) has provided a more precise understanding of the behaviour of the paraspinal muscles in people with low back pain (LBP); but so far, HDEMG has not been used to investigate the flexion relaxation phenomenon (FRP). To evaluate this, HDEMG signals were detected with grids of electrodes (13 × 5) placed bilaterally over the lumbar paraspinal muscles in individuals with and without LBP as they performed repetitions of full trunk flexion. The root mean square of the HDEMG signals was computed to generate the average normalized amplitude; and the spatial FRP onset was determined and expressed as percentage of trunk flexion. Smoothing spline analysis of variance models and the contrast cycle difference approach using the Bayesian interpretation were used to determine statistical inference. All pain-free controls and 64.3% of the individuals with LBP exhibited the FRP. Individuals with LBP and the FRP exhibited a delay of its onset compared to pain-free controls (significant mean difference of 13.3% of trunk flexion). They also showed reduced normalized amplitude compared to those without the FRP, but still greater than pain-free controls (significant mean difference of 27.4% and 11.6% respectively). This study provides novel insights into changes in lumbar muscle behavior in individuals with LBP.
Collapse
Affiliation(s)
- Carlos Murillo
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Bernard Liew
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
31
|
Arvanitidis M, Falla D, Martinez-Valdes E. Can visual feedback on upper trapezius high-density surface electromyography increase time to task failure of an endurance task? J Electromyogr Kinesiol 2019; 49:102361. [PMID: 31605889 DOI: 10.1016/j.jelekin.2019.102361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022] Open
Abstract
We investigate whether visual feedback on the spatial distribution of upper trapezius muscle activity can prolong time to task failure of sustained shoulder abduction. Surface electromyographic signals were acquired with a 13x5 grid of high-density electromyography (HDEMG) electrodes from the right upper trapezius muscle of 12 healthy volunteers as they performed sustained isometric shoulder abduction at 20% of their maximum voluntary contraction torque (MVC) until volitional exhaustion. Data were collected in two sessions; one with HDEMG visual feedback on the spatial distribution of upper trapezius activity and one without feedback. Although the HDEMG amplitude maps could be voluntarily modified by the participants during the feedback condition (significant shift in the barycenter of activity towards the cranial direction, P = 0.038), this did not influence endurance time (total endurance time with HDEMG feedback: 149.01 ± 77.07 s, no feedback 141.74 ± 60.93 s, P = 0.532). Future studies should assess whether endurance performance can be enhanced by allowing changes in arm position during the task (changing fiber tension-length relationships), by providing a more individual motor strategy, and/or by manipulating the colours used for the HDEMG maps (lighter colours for higher contraction intensities).
Collapse
Affiliation(s)
- Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|