1
|
Tang J, Cheng Y, Ding M, Wang C. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications. Chempluschem 2023; 88:e202300449. [PMID: 37787015 DOI: 10.1002/cplu.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yibo Cheng
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muhua Ding
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
2
|
Grover A, Sinha R, Jyoti D, Faggio C. Imperative role of electron microscopy in toxicity assessment: A review. Microsc Res Tech 2021; 85:1976-1989. [PMID: 34904321 DOI: 10.1002/jemt.24029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Electron microscope (EM) was developed in 1931 and since then microscopical examination of both the biological and non-biological samples has been revolutionized. Modifications in electron microscopy techniques, such as scanning EM and transmission EM, have widened their applicability in the various sectors such as understanding of drug toxicity, development of mechanism, criminal site investigation, and characterization of the nano-molecule. The present review summarizes its role in important aspects such as toxicity assessment and disease diagnosis in special reference to SARS-COV2. In the biological system, EM studies have elucidated the impact of toxicants at the ultra-structural level in various tissue in conformity to physiological alterations. Thus, EM can be concluded as an important tool in toxicity assessment and disease prognosis.
Collapse
Affiliation(s)
- Aseem Grover
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Reshma Sinha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
3
|
Dutta M, Jana B. Computational modeling of dynein motor proteins at work. Chem Commun (Camb) 2021; 57:272-283. [PMID: 33332489 DOI: 10.1039/d0cc05857b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with various experimental methods, a combination of theoretical and computational methods is essential to explore different length-scale and time-scale processes in the biological system. The functional mechanism of a dynein, an ATP-fueled motor protein, working in a multiprotein complex, involves a wide range of length/time-scale events. It generates mechanical force from chemical energy and moves on microtubules towards the minus end direction while performing a large number of biological processes including ciliary beating, intracellular material transport, and cell division. Like in the cases of other conventional motor proteins, a combination of experimental techniques including X-crystallography, cryo-electron microscopy, and single molecular assay have provided a wealth of information about the mechanochemical cycle of a dynein. Dyneins have a large and complex structural architecture and therefore, computational modeling of different aspects of a dynein is extremely challenging. As the process of dynein movement involves varying length and timescales, it demands, like in experiments, a combination of computational methods covering such a wide range of processes for the comprehensive investigation of the mechanochemical cycle. In this review article, we will summarize how the use of state-of-the-art computational methods can provide a detailed molecular understanding of the mechanochemical cycle of the dynein. We implemented all-atom molecular dynamics simulations and hybrid quantum-mechanics/molecular-mechanics simulations to explore the ATP hydrolysis mechanisms at the primary ATPase site (AAA1) of dynein. To investigate the large-scale conformational changes we employed coarse-grained structure-based molecular dynamics simulations to capture the domain motions. Here we explored the conformational changes upon binding of ATP at AAA1, nucleotide state-dependent regulation of the mechanochemical cycle, and inter-head coordination by inter-head tension. Additionally, implementing a phenomenological theoretical model we explore the force-dependent detachment rate of a motorhead from the microtubule and the principle of multi-dynein cooperation during cargo transport.
Collapse
Affiliation(s)
- Mandira Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | | |
Collapse
|
4
|
Lee SC, Knowles TJ, Postis VLG, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR. A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 2016; 11:1149-62. [PMID: 27254461 DOI: 10.1038/nprot.2016.070] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins.
Collapse
Affiliation(s)
- Sarah C Lee
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Tim J Knowles
- School of Cancer Sciences, University of Birmingham, Birmingham, UK.,Present address: Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Vincent L G Postis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, UK
| | | | | | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Adrian Goldman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland
| | - Pooja Sridhar
- School of Cancer Sciences, University of Birmingham, Birmingham, UK.,Present address: Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Michael Overduin
- School of Biosciences, University of Birmingham, Birmingham, UK.,Department of Biochemistry, Faculty of Medicine &Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
5
|
Hoffmann PM. How molecular motors extract order from chaos (a key issues review). REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:032601. [PMID: 26863000 DOI: 10.1088/0034-4885/79/3/032601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular motors are the workhorses of living cells. Seemingly by 'magic', these molecules are able to complete purposeful tasks while being immersed in a sea of thermal chaos. Here, we review the current understanding of how these machines work, present simple models based on thermal ratchets, discuss implications for statistical physics, and provide an overview of ongoing research in this important and fascinating field of study.
Collapse
Affiliation(s)
- Peter M Hoffmann
- Department of Physics and Astronomy, Wayne State University, 666 W Hancock, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016; 100:3-15. [PMID: 26931652 PMCID: PMC4854231 DOI: 10.1016/j.ymeth.2016.02.017] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150 kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a ‘resolution revolution’, owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM.
Collapse
Affiliation(s)
- Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Matt Walker
- MLW Consulting, 11 Race Hill, Launceston, Cornwall PL15 9BB, United Kingdom
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
7
|
Chowdhury S, Ketcham SA, Schroer TA, Lander GC. Structural organization of the dynein-dynactin complex bound to microtubules. Nat Struct Mol Biol 2015; 22:345-7. [PMID: 25751425 PMCID: PMC4385409 DOI: 10.1038/nsmb.2996] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Cytoplasmic dynein associates with dynactin to drive cargo movement on microtubules, but the structure of the dynein-dynactin complex is unknown. Using electron microscopy, we determined the organization of native bovine dynein, dynactin and the dynein-dynactin-microtubule quaternary complex. In the microtubule-bound complex, the dynein motor domains are positioned for processive unidirectional movement, and the cargo-binding domains of both dynein and dynactin are accessible.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Trina A. Schroer
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Zhao XY, Sun W, Zhang JP, Tala, Guo WS. A model for the coordinated stepping of cytoplasmic dynein. Biochem Biophys Res Commun 2014; 453:686-91. [PMID: 25301561 DOI: 10.1016/j.bbrc.2014.09.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022]
Abstract
Cytoplasmic dynein play an important role in transporting various intracellular cargos by coupling their ATP hydrolysis cycle with their conformational changes. Recent experimental results showed that the cytoplasmic dynein had a highly variable stepping pattern including "hand-over-hand", "inchworm" and "nonalternating-inchworm". Here, we developed a model to describe the coordinated stepping patterns of cytoplasmic dynein, based on its working cycle, construction and the interaction between its leading head and tailing head. The kinetic model showed how change in the distance between the two heads influences the rate of cytoplasmic dynein under different stepping patterns. Numerical simulations of the distribution of step size and striding rate are in good quantitative agreement with experimental observations. Hence, our coordinated stepping model for cytoplasmic dynein successfully explained its diverse stepping patterns as a molecular motor. The cooperative mechanism carried out by the two heads of cytoplasmic dynein shed light on the strategies adopted by the cytoplasmic dynein in executing various functions.
Collapse
Affiliation(s)
- X Y Zhao
- School of Physical Science and Technology, Inner Mongolia University, 235 West Street, 010021 Hohhot, Inner Mongolia, China; Inner Mongolia Vocational College of Chemical Engineering, Higher Vocational Technology Park, 010070 Hohhot, Inner Mongolia, China
| | - W Sun
- School of Physical Science and Technology, Inner Mongolia University, 235 West Street, 010021 Hohhot, Inner Mongolia, China; Department of Information and Automation, Ordos Vocational College, Yikezhao Street, Kangbashi New District, 017000 Ordos, Inner Mongolia, China
| | - J P Zhang
- School of Physical Science and Technology, Inner Mongolia University, 235 West Street, 010021 Hohhot, Inner Mongolia, China
| | - Tala
- School of Physical Science and Technology, Inner Mongolia University, 235 West Street, 010021 Hohhot, Inner Mongolia, China
| | - W S Guo
- School of Physical Science and Technology, Inner Mongolia University, 235 West Street, 010021 Hohhot, Inner Mongolia, China.
| |
Collapse
|
9
|
Gleave ES, Schmidt H, Carter AP. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. J Struct Biol 2014; 186:367-75. [PMID: 24680784 PMCID: PMC4047620 DOI: 10.1016/j.jsb.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/05/2022]
Abstract
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins.
Collapse
Affiliation(s)
- Emma S Gleave
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Helgo Schmidt
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Andrew P Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 2013; 14:713-26. [PMID: 24064538 DOI: 10.1038/nrm3667] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.
Collapse
Affiliation(s)
- Anthony J Roberts
- 1] Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
11
|
ATP-driven remodeling of the linker domain in the dynein motor. Structure 2012; 20:1670-80. [PMID: 22863569 PMCID: PMC3469822 DOI: 10.1016/j.str.2012.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/13/2023]
Abstract
Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the “linker” domain, involving a hinge near its middle. Analysis of a mutant in which the linker “undocks” from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport.
Collapse
|
12
|
Analyses of dynein heavy chain mutations reveal complex interactions between dynein motor domains and cellular dynein functions. Genetics 2012; 191:1157-79. [PMID: 22649085 DOI: 10.1534/genetics.112.141580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies.
Collapse
|
13
|
Fera A, Farrington JE, Zimmerberg J, Reese TS. A negative stain for electron microscopic tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:331-335. [PMID: 22364718 PMCID: PMC3650645 DOI: 10.1017/s1431927611012797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While negative staining can provide detailed, two-dimensional images of biological structures, the potential of combining tomography with negative staining to provide three-dimensional views has yet to be fully realized. Basic requirements of a negative stain for tomography are that the density and atomic number of the stain are optimal, and that the stain does not degrade or rearrange with the intensive electron dose (~10⁶ e/nm²) needed to collect a full set of tomographic images. A commercially available, tungsten-based stain appears to satisfy these prerequisites. Comparison of the surface structure of negatively stained influenza A virus with previous structural results served to evaluate this negative stain. The combination of many projections of the same structure yielded detailed images of single proteins on the viral surface. Corresponding surface renderings are a good fit to images of the viral surface derived from cryomicroscopy as well as to the shapes of crystallized surface proteins. Negative stain tomography with the appropriate stain yields detailed images of individual molecules in their normal setting on the surface of the influenza A virus.
Collapse
Affiliation(s)
- Andrea Fera
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jane E. Farrington
- Laboratory of Cellular Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua Zimmerberg
- Laboratory of Cellular Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Lin J, Heuser T, Carbajal-González BI, Song K, Nicastro D. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton (Hoboken) 2012; 69:88-100. [PMID: 22170736 DOI: 10.1002/cm.21000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023]
Abstract
Radial spokes (RSs) are ubiquitous components of motile cilia and flagella and play an essential role in transmitting signals that regulate the activity of the dynein motors, and thus ciliary and flagellar motility. In some organisms, the 96 nm axonemal repeat unit contains only a pair of spokes, RS1 and RS2, while most organisms have spoke triplets with an additional spoke RS3. The spoke pairs in Chlamydomonas flagella have been well characterized, while spoke triplets have received less attention. Here, we used cryoelectron tomography and subtomogram averaging to visualize the three-dimensional structure of spoke triplets in Strongylocentrotus purpuratus (sea urchin) sperm flagella in unprecedented detail. Only small differences were observed between RS1 and RS2, but the structure of RS3 was surprisingly unique and structurally different from the other two spokes. We observed novel doublet specific features that connect RS2, RS3, and the nexin-dynein regulatory complex, three key ciliary and flagellar structures. The distribution of these doublet specific structures suggests that they could be important for establishing the asymmetry of dynein activity required for the oscillatory movement of cilia and flagella. Surprisingly, a comparison with other organisms demonstrated both that this considerable RS heterogeneity is conserved and that organisms with RS pairs contain the basal part of RS3. This conserved RS heterogeneity may also reflect functional differences between the spokes and their involvement in regulating ciliary and flagellar motility.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Biology, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
15
|
Cho C, Vale RD. The mechanism of dynein motility: insight from crystal structures of the motor domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:182-91. [PMID: 22062687 DOI: 10.1016/j.bbamcr.2011.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022]
Abstract
Dynein is a large cytoskeletal motor protein that belongs to the AAA+ (ATPases associated with diverse cellular activities) superfamily. While dynein has had a rich history of cellular research, its molecular mechanism of motility remains poorly understood. Here we describe recent X-ray crystallographic studies that reveal the architecture of dynein's catalytic ring, mechanical linker element, and microtubule binding domain. This structural information has given rise to new hypotheses on how the dynein motor domain might change its conformation in order to produce motility along microtubules.
Collapse
Affiliation(s)
- Carol Cho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | | |
Collapse
|
16
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|
17
|
Markus SM, Lee WL. Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex. Dev Cell 2011; 20:639-51. [PMID: 21571221 DOI: 10.1016/j.devcel.2011.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/22/2010] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Cytoplasmic dynein mediates spindle orientation from the cell cortex through interactions with astral microtubules, but neither the mechanism governing its cortical targeting nor the regulation thereof is well understood. Here we show that yeast dynein offloads from microtubule plus ends to the daughter cell cortex. Mutants with an engineered peptide inserted between the tail domain and the motor head retain wild-type motor activity but exhibit enhanced offloading and cortical targeting. Conversely, shortening the "neck" sequence between the tail and motor domains precludes offloading from the microtubule plus ends. Furthermore, chimeric mutants with mammalian dynein "neck" sequences rescue targeting and function. These findings provide direct support for an active microtubule-mediated delivery process that appears to be regulated by a conserved masking/unmasking mechanism.
Collapse
Affiliation(s)
- Steven M Markus
- Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | | |
Collapse
|
18
|
Single-particle electron microscopy of animal fatty acid synthase describing macromolecular rearrangements that enable catalysis. Methods Enzymol 2010. [PMID: 20888475 DOI: 10.1016/s0076-6879(10)83009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have used macromolecular electron microscopy (EM) to characterize the conformational flexibility of the animal fatty acid synthase (FAS). Here we describe in detail methods employed for image collection and analysis. We also provide an account of how EM results were interpreted by considering a high-resolution static FAS X-ray structure and functional data to arrive at a molecular understanding of the way in which conformational pliability enables fatty acid synthesis.
Collapse
|
19
|
Movassagh T, Bui KH, Sakakibara H, Oiwa K, Ishikawa T. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nat Struct Mol Biol 2010; 17:761-7. [PMID: 20453857 DOI: 10.1038/nsmb.1832] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 03/24/2010] [Indexed: 01/03/2023]
Abstract
Outer and inner dynein arms generate force for the flagellar/ciliary bending motion. Although nucleotide-induced structural change of dynein heavy chains (the ATP-driven motor) was proven in vitro, our lack of knowledge in situ has precluded an understanding of the bending mechanism. Here we reveal nucleotide-induced global structural changes of the outer and inner dynein arms of Chlamydomonas reinhardtii flagella in situ using electron cryotomography. The ATPase domains of the dynein heavy chains move toward the distal end, and the N-terminal tail bends sharply during product release. This motion could drive the adjacent microtubule to cause a sliding motion. In contrast to in vitro results, in the presence of nucleotides, outer dynein arms coexist as clusters of apo or nucleotide-bound forms in situ. This implies a cooperative switching, which may be related to the mechanism of bending.
Collapse
|
20
|
Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. Proc Natl Acad Sci U S A 2010; 107:6799-804. [PMID: 20351242 DOI: 10.1073/pnas.0907585107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The powerstroke of the myosin motor is the basis of cell division and bodily movement, but has eluded empirical description due to the short lifetime and low abundance of intermediates during force generation. To gain insight into this process, we used well-established single-tryptophan and pyrene fluorescent sensors and electron microscopy to characterize the structural and kinetic properties of myosin complexed with ADP and blebbistatin, a widely used inhibitor. We found that blebbistatin does not weaken the tight actin binding of myosin.ADP, but unexpectedly it induces lever priming, a process for which the gamma-phosphate of ATP (or its analog) had been thought necessary. The results indicate that a significant fraction of the myosin.ADP.blebbistatin complex populates a previously inaccessible conformation of myosin resembling the start of the powerstroke.
Collapse
|
21
|
Chen Q, Li DY, Oiwa K. Phenomenological simulation of self-organization of microtubule driven by dynein c. J Chem Phys 2009; 130:214107. [DOI: 10.1063/1.3139300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 2009; 16:325-33. [PMID: 19198589 PMCID: PMC2757048 DOI: 10.1038/nsmb.1555] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/05/2009] [Indexed: 01/01/2023]
Abstract
Coupling between ATPase and track binding sites is essential for molecular motors to move along cytoskeletal tracks. In dynein, these sites are separated by a long coiled coil stalk that must mediate communication between them, but the underlying mechanism remains unclear. Here we show that changes in registration between the two helices of the coiled coil can perform this function. We locked the coiled coil at three specific registrations using oxidation to disulfides of paired cysteine residues introduced into the two helices. These trapped ATPase activity either in a microtubule-independent high or low state, and microtubule binding activity either in an ATP-insensitive strong or weak state, depending on the registry of the coiled coil. Our results provide direct evidence that dynein uses sliding between the two helices of the stalk to couple ATPase and microtubule binding activities during its mechanochemical cycle.
Collapse
Affiliation(s)
- Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 2009; 136:485-95. [PMID: 19203583 PMCID: PMC2706395 DOI: 10.1016/j.cell.2008.11.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/12/2008] [Accepted: 11/26/2008] [Indexed: 12/22/2022]
Abstract
Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged and truncated Dictyostelium cytoplasmic dynein constructs, we show that the heart of the motor is a hexameric ring of AAA+ modules, with the stalk emerging opposite the primary ATPase site (AAA1). The C-terminal region is not an integral part of the ring but spans between AAA6 and near the stalk base. The N-terminal region includes a lever-like linker whose N terminus swings by ∼17 nm during the ATPase cycle between AAA2 and the stalk base. Together with evidence of stalk tilting, which may communicate changes in microtubule binding affinity, these findings suggest a model for dynein's structure and mechanism.
Collapse
Affiliation(s)
- Anthony J Roberts
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roberts AJ, Burgess SA. Electron Microscopic Imaging and Analysis of Isolated Dynein Particles. Methods Cell Biol 2009; 91:41-61. [DOI: 10.1016/s0091-679x(08)91002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. ACTA ACUST UNITED AC 2008; 183:923-32. [PMID: 19029338 PMCID: PMC2592835 DOI: 10.1083/jcb.200808050] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.
Collapse
Affiliation(s)
- Khanh Huy Bui
- Department of Biology, Eidgenössische Technische Hochschule Zürich, CH8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Surcel A, Koshland D, Ma H, Simpson RT. Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure. PLoS One 2008; 3:e2453. [PMID: 18545699 PMCID: PMC2408725 DOI: 10.1371/journal.pone.0002453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/08/2008] [Indexed: 12/30/2022] Open
Abstract
Cohesin is the protein complex responsible for maintaining sister chromatid cohesion. Cohesin interacts with centromeres and specific loci along chromosome arms known as Chromosome Attachment Regions (CARs). The cohesin holocomplex contains four subunits. Two of them, Smc1p (Structural maintenance of chromosome 1 protein) and Smc3p, are long coiled-coil proteins, which heterodimerize with each other at one end. They are joined together at the other end by a third subunit, Scc1p, which also binds to the fourth subunit, Scc3p. How cohesin interacts with chromosomes is not known, although several models have been proposed, in part on the basis of in vitro assembly of purified cohesin proteins. To be able to observe in vivo cohesin-chromatin interactions, we have modified a Minichromosome Affinity Purification (MAP) method to isolate a CAR-containing centromeric minichromosome attached to in vivo assembled cohesin. Transmission Electron Microscopy (TEM) analysis of these minichromosomes suggests that cohesin assumes a rod shape and interacts with replicated minichromosome at one end of that rod. Additionally, our data implies that more than one cohesin molecule interacts with each pair of replicated minichromsomes. These molecules seem to be packed into a single thick rod, suggesting that the Smc1p and Smc3p subunits may interact extensively.
Collapse
Affiliation(s)
- Alexandra Surcel
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Douglas Koshland
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Hong Ma
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert T. Simpson
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
27
|
Lupetti P, Lanzavecchia S, Mercati D, Cantele F, Dallai R, Mencarelli C. Three-dimensional reconstruction of axonemal outer dynein arms in situ by electron tomography. ACTA ACUST UNITED AC 2008; 62:69-83. [PMID: 16106450 DOI: 10.1002/cm.20084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present here for the first time a 3D reconstruction of in situ axonemal outer dynein arms. This reconstruction has been obtained by electron tomography applied to a series of tilted images collected from metal replicas of rapidly frozen, cryofractured, and metal-replicated sperm axonemes of the cecidomid dipteran Monarthropalpus flavus. This peculiar axonemal model consists of several microtubular laminae that proved to be particularly suitable for this type of analysis. These laminae are sufficiently planar to allow the visualization of many dynein molecules within the same fracture face, allowing us to recover a significant number of equivalent objects and to improve the signal-to-noise ratio of the reconstruction by applying advanced averaging protocols. The 3D model we obtained showed the following interesting structural features: First, each dynein arm has two head domains that are almost parallel and are obliquely oriented with respect to the longitudinal axis of microtubules. The two heads are therefore positioned at different distances from the surface of the A-tubule. Second, each head domain consists of a series of globular subdomains that are positioned on the same plane. Third, a stalk domain originates as a conical region from the proximal head and ends with a small globular domain that contacts the B-tubule. Fourth, the stem region comprises several globular subdomains and presents two distinct points of anchorage to the surface of the A-tubule. Finally, and most importantly, contrary to what has been observed in isolated dynein molecules adsorbed to flat surfaces, the stalk and the stem domains are not in the same plane as the head.
Collapse
Affiliation(s)
- Pietro Lupetti
- Laboratory of Cryotechniques for Electron Microscopy, Dipartimento di Biologia Evolutiva, Università di Siena, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
SUMMARY The AAA+ superfamily is a large and functionally diverse superfamily of NTPases that are characterized by a conserved nucleotide-binding and catalytic module, the AAA+ module. Members are involved in an astonishing range of different cellular processes, attaining this functional diversity through additions of structural motifs and modifications to the core AAA+ module.
Collapse
Affiliation(s)
- Jamie Snider
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
29
|
Mencarelli C, Lupetti P, Dallai R. New insights into the cell biology of insect axonemes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:95-145. [PMID: 18703405 DOI: 10.1016/s1937-6448(08)00804-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects do not possess ciliated epithelia, and cilia/flagella are present in the sperm tail and--as modified cilia--in mechano- and chemosensory neurons. The core cytoskeletal component of these organelles, the axoneme, is a microtubule-based structure that has been conserved throughout evolution. However, in insects the sperm axoneme exhibits distinctive structural features; moreover, several insect groups are characterized by an unusual sperm axoneme variability. Besides the abundance of morphological data on insect sperm flagella, most of the available molecular information on the insect axoneme comes from genetic studies on Drosophila spermatogenesis, and only recently other insect species have been proposed as useful models. Here, we review the current knowledge on the cell biology of insect axoneme, including contributions from both Drosophila and other model insects.
Collapse
Affiliation(s)
- C Mencarelli
- Department of Evolutionary Biology, University of Siena, 53100 Siena, Italy
| | | | | |
Collapse
|
30
|
Abstract
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA.
| | | |
Collapse
|
31
|
Narita A, Mizuno N, Kikkawa M, Maéda Y. Molecular determination by electron microscopy of the dynein-microtubule complex structure. J Mol Biol 2007; 372:1320-36. [PMID: 17761194 DOI: 10.1016/j.jmb.2007.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Dynein is a minus-end-directed microtubule (MT) motor that is responsible for the wide range of MT-based motility in eukaryotic cells. Detailed mechanism of the dynein chemomechanical conversion is still unknown, partly because the structure of dynein is not studied at high resolution. To address this problem and reconstruct the dynein-MT complex at higher resolution, we have developed new procedures based on single particle analysis. To accurately determine the orientation of the dynein-MT complex, we introduced a "dynein track model" to restrict the possible dynein positions on the images. We tested our procedures by reconstructing structures from simulated dynein-MT complex images. Starting from the simulated noisy images generated using three different models of the dynein-MT complex, we have successfully recovered the original three-dimensional (3-D) structure. We also showed that our procedure is robust against fluctuation of the dynein molecules and can determine the structure even when the dynein position fluctuates to a certain extent. Convergence of the final 3-D structure can be tested with a "two-dimensional (2-D) agreement value," which we introduced to see whether the final structure is a result of overfit from fluctuating dynein or not. When the procedures did not work well due to the fluctuation, we could recognize the failure by this 2-D agreement value. Finally, the actual structure of the dynein-MT complex was determined from actual cryoelectron micrographs of Dictyostelium cytoplasmic dynein-MT complex. This method has revealed the detailed 3-D structures of the dynein-MT complex and will shed light on the motor mechanism of the dynein molecule.
Collapse
Affiliation(s)
- Akihiro Narita
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency, c/o RIKEN, Sayo, Hyogo 679-5148, Japan.
| | | | | | | |
Collapse
|
32
|
Sakato M, Sakakibara H, King SM. Chlamydomonas outer arm dynein alters conformation in response to Ca2+. Mol Biol Cell 2007; 18:3620-34. [PMID: 17634291 PMCID: PMC1951773 DOI: 10.1091/mbc.e06-10-0917] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that Ca(2+) directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the beta and gamma heavy chains (HCs). The gamma HC-associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca(2+) with K(Ca) = 3 x 10(-5) M in vitro, suggesting it may act as a Ca(2+) sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and gamma HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the gamma heavy chain. In vitro experiments indicate that LC4 undergoes a Ca(2+)-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca(2+). The sedimentation profile of the gamma HC subunit changed subtly upon Ca(2+) addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated gamma subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca(2+) addition. We propose that Ca(2+)-dependent conformational change of LC4 has a direct effect on the stem domain of the gamma HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm.
Collapse
Affiliation(s)
- Miho Sakato
- *Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Hitoshi Sakakibara
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan
| | - Stephen M. King
- *Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030; and
| |
Collapse
|
33
|
Kotani N, Sakakibara H, Burgess SA, Kojima H, Oiwa K. Mechanical properties of inner-arm dynein-f (dynein I1) studied with in vitro motility assays. Biophys J 2007; 93:886-94. [PMID: 17496036 PMCID: PMC1913158 DOI: 10.1529/biophysj.106.101964] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inner-arm dynein-f of Chlamydomonas flagella is a heterodimeric dynein. We performed conventional in vitro motility assays showing that dynein-f translocates microtubules at the comparatively low velocity of approximately 1.2 microm/s. From the dependence of velocity upon the surface density of dynein-f, we estimate its duty ratio to be 0.6-0.7. The relation between microtubule landing rate and surface density of dynein-f are well fitted by the first-power dependence, as expected for a processive motor. At low dynein densities, progressing microtubules rotate erratically about a fixed point on the surface, at which a single dynein-f molecule is presumably located. We conclude that dynein-f has high processivity. In an axoneme, however, slow and processive dynein-f could impede microtubule sliding driven by other fast dyneins (e.g., dynein-c). To obtain insight into the in vivo roles of dynein-f, we measured the sliding velocity of microtubules driven by a mixture of dyneins -c and -f at various mixing ratios. The velocity is modulated as a function of the ratio of dynein-f in the mixture. This modulation suggests that dynein-f acts as a load in the axoneme, but force pushing dynein-f molecules forward seems to accelerate their dissociation from microtubules.
Collapse
Affiliation(s)
- Norito Kotani
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 6781297, Japan
| | | | | | | | | |
Collapse
|
34
|
Watanabe TM, Sato T, Gonda K, Higuchi H. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics. Biochem Biophys Res Commun 2007; 359:1-7. [PMID: 17512495 DOI: 10.1016/j.bbrc.2007.04.168] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 11/17/2022]
Abstract
Dual-focus imaging optics for three-dimensional tracking of individual quantum dots has been developed to study the molecular mechanisms of motor proteins in cells. The new system has a high spatial and temporal precision, 2 nm in the x-y sample plane and 5 nm along the z-axis at a frame time of 2 ms. Three-dimensional positions of the vesicles labeled with quantum dots were detected in living cells. Vesicles were transported on the microtubules using 8-nm steps towards the nucleus. The steps had fluctuation of approximately 20 nm which were perpendicular to the axis of the microtubule but with the constant distance from the microtubule. The most of perpendicular movement was not synchronized with the 8-nm steps, indicating that dynein moved on microtubules without changing the protofilaments. When the vesicles changed their direction of movement toward the cell membrane, they moved perpendicular with the constant distance from the microtubule. The present method is powerful tool to investigate three dimensional movement of molecules in cells with nanometer and millisecond accuracy.
Collapse
Affiliation(s)
- Tomonobu M Watanabe
- Biomedical and Engineering Research Organization, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | | | | | | |
Collapse
|
35
|
Serohijos AWR, Chen Y, Ding F, Elston TC, Dokholyan NV. A structural model reveals energy transduction in dynein. Proc Natl Acad Sci U S A 2006; 103:18540-5. [PMID: 17121997 PMCID: PMC1693698 DOI: 10.1073/pnas.0602867103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular active transport is driven by ATP-hydrolyzing motor proteins that move along cytoskeletal filaments. In particular, the microtubule-associated dynein motor is involved in the transport of organelles and vesicles, the maintenance of the Golgi, and mitosis. However, unlike kinesin and myosin, the mechanism by which dynein converts chemical energy into mechanical force remains largely a mystery, due primarily to the lack of a high-resolution molecular structure. Using homology modeling and normal mode analysis, we propose a complete atomic structure and a mechanism for force generation by the motor protein dynein. In agreement with very recent electron microscopy (EM) reconstructions showing dynein as a ring-shaped heptamer, our model consists of six ATPases of the AAA (ATPases associated with various cellular activities) superfamily and a C-terminal domain, which is experimentally known to control motor function. Our model shows a coiled coil spanning the diameter of the motor that accounts for previously unidentified structures in EM studies and provides a potential mechanism for long-range communication between the AAA domains. Furthermore, normal mode analysis reveals that the subunits of the motor that contain the nucleotide binding sites exhibit minimal movement, whereas the rest of the motor is very mobile. Our analysis suggests the likely domain rearrangements of the motor unit that generate its power stroke. This study provides insights into the structure and function of dynein that can guide further experimental investigations into energy transduction in dynein.
Collapse
Affiliation(s)
| | | | | | - Timothy C. Elston
- Pharmacology, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence may be addressed. E-mail:
or
| | - Nikolay V. Dokholyan
- Biochemistry and Biophysics, and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
36
|
Shima T, Kon T, Imamula K, Ohkura R, Sutoh K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc Natl Acad Sci U S A 2006; 103:17736-40. [PMID: 17085593 PMCID: PMC1634414 DOI: 10.1073/pnas.0606794103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dynein is a huge multisubunit microtubule (MT)-based motor, whose motor domain resides in the heavy chain. The heavy chain comprises a ring of six AAA (ATPases associated with diverse cellular activities) modules with two slender protruding domains, the tail and stalk. It has been proposed that during the ATP hydrolysis cycle, this tail domain swings against the AAA ring as a lever arm to generate the power stroke. However, there is currently no direct evidence to support the model that the tail swing is tightly linked to dynein motility. To address the question of whether the power stroke of the tail drives MT sliding, we devised an in vitro motility assay using genetically biotinylated cytoplasmic dyneins anchored on a glass surface in the desired orientation with a biotin-streptavidin linkage. Assays on the dyneins with the site-directed biotin tag at eight different locations provided evidence that robust MT sliding is driven by the power stroke of the tail. Furthermore, the assays revealed slow MT sliding independent of dynein orientation on the glass surface, which is mechanically distinct from the sliding driven by the power stroke of the tail.
Collapse
Affiliation(s)
- Tomohiro Shima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kenji Imamula
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Reiko Ohkura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuo Sutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Abstract
Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of approximately 2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, IRC in Polymer Science and Technology, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
38
|
Dallai R, Lupetti P, Mencarelli C. Unusual Axonemes of Hexapod Spermatozoa. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:45-99. [PMID: 17147997 DOI: 10.1016/s0074-7696(06)54002-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hexapod spermatozoa exhibit a great variation in their axoneme structure. The 9+2 pattern organization is present in a few basal taxa and in some derived groups. In most hexapods, a crown of nine accessory microtubules surrounds the 9+2 array, giving rise to the so-called 9+9+2 pattern. This general organization, however, displays a number of modifications in several taxa. In this review, the main variations concerning the number and localization of the accessory tubules, microtubular doublets, central microtubules, dynein arms, and axonemal length are summarized. We discuss the phylogenetic significance of all this structural information as well as the current hypotheses relating the sperm size and sperm polymorphism with reproductive success of some hexapod species. Also described are the biochemical data and the motility patterns which are currently known on some peculiar aberrant axonemes, in light of the contribution these models may give to the comprehension of the general functioning of the conventional 9+2 axoneme. Finally, we summarize methodological developments for the study of axoneme ultrastructure and the new opportunities for the molecular analysis of hexapod axonemes.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Evolutionary Biology, University of Siena, Via A Moro 2, I-53100 Siena, Italy
| | | | | |
Collapse
|
39
|
Nan X, Sims PA, Chen P, Xie XS. Observation of Individual Microtubule Motor Steps in Living Cells with Endocytosed Quantum Dots. J Phys Chem B 2005; 109:24220-4. [PMID: 16375416 DOI: 10.1021/jp056360w] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the observation of individual steps taken by motor proteins in living cells by following movements of endocytic vesicles that contain quantum dots (QDs) with a fast camera. The brightness and photostability of quantum dots allow us to record motor displacement traces with 300 micros time resolution and 1.5 nm spatial precision. We observed individual 8 nm steps in active transport toward both the microtubule plus- and minus-ends, the directions of kinesin and dynein movements, respectively. In addition, we clearly resolved abrupt 16 nm steps in the plus-end direction and often consecutive 16 nm and occasional 24 nm steps in minus-end directed movements. This work demonstrates the ability of the QD assay to probe the operation of motor proteins at the molecular level in living cells under physiological conditions.
Collapse
Affiliation(s)
- Xiaolin Nan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
Collapse
Affiliation(s)
- Yi Qin Gao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
41
|
Singh MP, Mallik R, Gross SP, Yu CC. Monte Carlo modeling of single-molecule cytoplasmic dynein. Proc Natl Acad Sci U S A 2005; 102:12059-64. [PMID: 16103365 PMCID: PMC1189307 DOI: 10.1073/pnas.0501570102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
Collapse
Affiliation(s)
- Manoranjan P Singh
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
42
|
Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 2005; 280:23960-5. [PMID: 15826937 PMCID: PMC1464088 DOI: 10.1074/jbc.m501636200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-binding domain (MTBD) of dynein is separated from the AAA (ATPase with any other activity) core of the motor by an approximately 15-nm stalk that is predicted to consist of an antiparallel coiled coil. However, the structure of this coiled coil and the mechanism it uses to mediate communication between the MTBD and ATP-binding core are unknown. Here, we sought to identify the optimal alignment between the hydrophobic heptad repeats in the two strands of the stalk coiled coil. To do this, we fused the MTBD of mouse cytoplasmic dynein, together with 12-36 residues of its stalk, onto a stable coiled-coil base provided by Thermus thermophilus seryl-tRNA synthetase and tested these chimeric constructs for microtubule binding in vitro. The results identified one alignment that yielded a protein displaying high affinity for microtubules (2.2 microM). The effects of mutations applied to the MTBD of this construct paralleled those previously reported (Koonce, M. P., and Tikhonenko, I. (2000) Mol. Biol. Cell 11, 523-529) for an intact dynein motor unit in the absence of ATP, suggesting that it resembles the tight binding state of native intact dynein. All other alignments showed at least 10-fold lower affinity for microtubules with the exception of one, which had an intermediate affinity. Based on these results and on amino acid sequence analysis, we hypothesize that dynein utilizes small amounts of sliding displacement between the two strands of its coiled-coil stalk as a means of communication between the AAA core of the motor and the MTBD during the mechanochemical cycle.
Collapse
Affiliation(s)
- I R Gibbons
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Dyneins are the largest and most complex of the three classes of linear motor proteins in eukaryotic cells. The mass of the dynein motor domain is about ten times that of the other microtubule motor, kinesin. Dynein's homology with the AAA+ superfamily of mechanoenzymes distinguishes it from both kinesin and myosin, which share a common fold and ancestry as members of the G-protein superfamily. In contrast to the other motor proteins, little is known about the mechanism of dynein; its three-dimensional structure is unknown even at low resolution. Recent two-dimensional images from electron microscopy have revealed new details of its structure and how this changes to produce movement. These and the recently solved crystal structure of another AAA+ protein, ClpB, offer tantalising hints about dynein's mechanism, suggesting it may act like a molecular winch.
Collapse
Affiliation(s)
- Stan A Burgess
- Astbury Centre for Structural Molecular Biology & School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
44
|
Kon T, Mogami T, Ohkura R, Nishiura M, Sutoh K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat Struct Mol Biol 2005; 12:513-9. [PMID: 15880123 DOI: 10.1038/nsmb930] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/30/2005] [Indexed: 11/10/2022]
Abstract
The motor protein dynein is predicted to move the tail domain, a slender rod-like structure, relative to the catalytic head domain to carry out its power stroke. Here, we investigated ATP hydrolysis cycle-dependent conformational dynamics of dynein using fluorescence resonance energy transfer analysis of the dynein motor domain labeled with two fluorescent proteins. We show that dynein adopts at least two conformational states (states I and II), and the tail undergoes ATP-induced motions relative to the head domain during transitions between the two states. Our measurements also suggest that in the course of the ATP hydrolysis cycle of dynein, the tail motion from state I to state II takes place in the ATP-bound state, whereas the motion from state II to state I occurs in the ADP-bound state. The latter tail motion may correspond to the predicted power stroke of dynein.
Collapse
Affiliation(s)
- Takahide Kon
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
45
|
Marx A, Müller J, Mandelkow E. The structure of microtubule motor proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:299-344. [PMID: 16230115 DOI: 10.1016/s0065-3233(04)71008-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microtubules are the intracellular tracks for two classes of motor proteins: kinesins and dyneins. During the past few years, the motor domain structures of several kinesins from different organisms have been determined by X-ray crystallography. Compared with kinesins, dyneins are much larger proteins and attempts to crystallize them have failed so far. Structural information about these proteins comes mostly from electron microscopy. In this chapter, we mainly focus on the crystal structures of kinesin motor domains.
Collapse
Affiliation(s)
- A Marx
- Max-Planck-Unit for Structural Molecular Biology; Notkestrasse 85, 22607 Hamburg, Germany
| | | | | |
Collapse
|
46
|
Abstract
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.
Collapse
Affiliation(s)
- Roop Mallik
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA
| | | |
Collapse
|
47
|
Burgess SA, Walker ML, Thirumurugan K, Trinick J, Knight PJ. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J Struct Biol 2004; 147:247-58. [PMID: 15450294 DOI: 10.1016/j.jsb.2004.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/07/2004] [Indexed: 10/26/2022]
Abstract
Flexible macromolecules pose special difficulties for structure determination by crystallography or NMR. Progress can be made by electron microscopy, but electron cryo-microscopy of unstained, hydrated specimens is limited to larger macromolecules because of the inherently low signal-to-noise ratio. For three-dimensional structure determination, the single particles must be invariant in structure. Here, we describe how we have used negative staining and single-particle image processing techniques to explore the structure and flexibility of single molecules of two motor proteins: myosin and dynein. Critical for the success of negative staining is a hydrophilic, thin carbon film, because it produces a low noise background around each molecule, and stabilises the molecule against damage by the stain. The strategy adopted for single-particle image processing exploits the flexibility available within the SPIDER software suite. We illustrate the benefits of successive rounds of image alignment and classification, and the use of whole molecule averages and movies to analyse and display both structure and flexibility within the dynein motor.
Collapse
Affiliation(s)
- Stan A Burgess
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
48
|
Samsó M, Koonce MP. 25Å Resolution Structure of a Cytoplasmic Dynein Motor Reveals a Seven-member Planar Ring. J Mol Biol 2004; 340:1059-72. [PMID: 15236967 DOI: 10.1016/j.jmb.2004.05.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/26/2004] [Accepted: 05/27/2004] [Indexed: 11/25/2022]
Abstract
Dyneins form one of the three major families of cytoskeleton-based motor proteins that together drive most of the visible forms of cell and organelle movement. We present here a 3D reconstruction of a cytoplasmic dynein motor domain obtained by electron microscopy, at 25 Angstrom resolution. This work demonstrates a basic motor architecture of a flat, slightly elliptical ring composed of seven densities arranged around a partially enclosed central cavity. We have used specific Fab tags to localize the microtubule-binding domain; the connecting stalk emerges at one end of the motor's long axis. Through proposed fitting of representative AAA domain structures, we show that the nucleotide catalytic P-1 domain is likely located at the opposite end of the motor. Thus mechanisms that couple nucleotide hydrolysis with microtubule binding must be propagated around a ring structure, in a manner clearly distinct from kinesin or myosin-mediated movements. Analysis of the Fab tagged datasets reveals classes of particles with stalks protruding at distinct angles from the motor. There is a approximately 40 degrees variation in microtubule-binding stalk angle that may reflect linkage to dynein's mechanochemical cycle. Overall, the work provides sufficient resolution to begin the mapping of landmark features onto a dynein motor, and provides a foundation for understanding the mechanics of dynein movement.
Collapse
Affiliation(s)
- Montserrat Samsó
- Division of Molecular Medicine Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | | |
Collapse
|