1
|
McCormick RA, Ralbovsky NM, Gilbraith W, Smith JP, Booksh KS. Analyzing atomic force microscopy images of virus-like particles by expectation-maximization. NPJ Vaccines 2024; 9:112. [PMID: 38902288 PMCID: PMC11190231 DOI: 10.1038/s41541-024-00871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/28/2024] [Indexed: 06/22/2024] Open
Abstract
Analysis of virus-like particles (VLPs) is an essential task in optimizing their implementation as vaccine antigens for virus-initiated diseases. Interrogating VLP collections for elasticity by probing with a rigid atomic force microscopy (AFM) tip is a potential method for determining VLP morphological changes. During VLP morphological change, it is not expected that all VLPs would be in the same state. This leads to the open question of whether VLPs may change in a continuous or stepwise fashion. For continuous change, the statistical distribution of observed VLP properties would be expected as a single distribution, while stepwise change would lead to a multimodal distribution of properties. This study presents the application of a Gaussian mixture model (GMM), fit by the Expectation-Maximization (EM) algorithm, to identify different states of VLP morphological change observed by AFM imaging.
Collapse
Affiliation(s)
- Rachel A McCormick
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA, 19486, USA
| | - William Gilbraith
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Joseph P Smith
- Process Research & Development, MRL, Merck & Co., Inc, West Point, PA, 19486, USA.
| | - Karl S Booksh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
2
|
Shtykova EV, Dubrovin EV, Ksenofontov AL, Gifer PK, Petoukhov MV, Tokhtar VK, Sapozhnikova IM, Stavrianidi AN, Kordyukova LV, Batishchev OV. Structural Insights into Plant Viruses Revealed by Small-Angle X-ray Scattering and Atomic Force Microscopy. Viruses 2024; 16:427. [PMID: 38543792 PMCID: PMC10975137 DOI: 10.3390/v16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Evgeniy V. Dubrovin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Polina K. Gifer
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Maxim V. Petoukhov
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Valeriy K. Tokhtar
- Scientific and Educational Center, Botanical Garden of the National Research University “BelSU”, Belgorod 308033, Russia;
| | - Irina M. Sapozhnikova
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia;
| | - Andrey N. Stavrianidi
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| |
Collapse
|
3
|
Evans CT, Payton O, Picco L, Allen MJ. Visualisation of microalgal-viral interactions by high-speed atomic force microscopy. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Visualization of viruses and their hosts has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. This study demonstrates progress that has been made in exploiting the capabilities offered by HS-AFM to characterise the interactions between coccolithoviruses and their globally important coccolithophore hosts. We observe whole Emiliania huxleyi Virus capsids, transient binding to Emiliania huxleyi derived supported lipid bilayers, and host-virus binding in real-time in an environmentally relevant, aqueous environment.
Collapse
|
4
|
Turzynski V, Monsees I, Moraru C, Probst AJ. Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses 2021; 13:2126. [PMID: 34834933 PMCID: PMC8622608 DOI: 10.3390/v13112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses-bacteriophages and archaeal viruses-influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage-host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth's ecosystems.
Collapse
Affiliation(s)
- Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany;
| | - Alexander J. Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
5
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Evans CT, Payton O, Picco L, Allen MJ. Algal Viruses: The (Atomic) Shape of Things to Come. Viruses 2018; 10:E490. [PMID: 30213102 PMCID: PMC6165301 DOI: 10.3390/v10090490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 01/15/2023] Open
Abstract
Visualization of algal viruses has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. However, the high temporal (ms) and spatial resolution (nm) required, combined with the need to operate in physiologically relevant conditions presents a significant challenge. Here we present a short history of virus structure study and its relation to algal viruses and highlight current work, concentrating on electron microscopy and atomic force microscopy, towards the direct observation of individual algae⁻virus interactions. Finally, we make predictions towards future algal virus study direction with particular focus on the exciting opportunities offered by modern high-speed atomic force microscopy methods and instrumentation.
Collapse
Affiliation(s)
- Christopher T Evans
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Oliver Payton
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Loren Picco
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Michael J Allen
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
7
|
Chen SWW, Teulon JM, Godon C, Pellequer JL. Atomic force microscope, molecular imaging, and analysis. J Mol Recognit 2015. [PMID: 26224520 DOI: 10.1002/jmr.2491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Image visibility is a central issue in analyzing all kinds of microscopic images. An increase of intensity contrast helps to raise the image visibility, thereby to reveal fine image features. Accordingly, a proper evaluation of results with current imaging parameters can be used for feedback on future imaging experiments. In this work, we have applied the Laplacian function of image intensity as either an additive component (Laplacian mask) or a multiplying factor (Laplacian weight) for enhancing image contrast of high-resolution AFM images of two molecular systems, an unknown protein imaged in air, provided by AFM COST Action TD1002 (http://www.afm4nanomedbio.eu/), and tobacco mosaic virus (TMV) particles imaged in liquid. Based on both visual inspection and quantitative representation of contrast measurements, we found that the Laplacian weight is more effective than the Laplacian mask for the unknown protein, whereas for the TMV system the strengthened Laplacian mask is superior to the Laplacian weight. The present results indicate that a mathematical function, as exemplified by the Laplacian function, may yield varied processing effects with different operations. To interpret the diversity of molecular structure and topology in images, an explicit expression for processing procedures should be included in scientific reports alongside instrumental setups.
Collapse
Affiliation(s)
| | - Jean-Marie Teulon
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207, Bagnols sur Cèze, France.,CEA, IBS, Univ. Grenoble Alpes/CNRS/CEA, 71 avenue des Martyrs CS 10090, F-38044, Grenoble cedex 9, France
| | - Christian Godon
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207, Bagnols sur Cèze, France.,CEA, iBEB, Service de Biologie Végétale et Microbiologie Environnementale/LBDP, F-13108, Saint-Paul-Lez-Durance, France
| | - Jean-Luc Pellequer
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207, Bagnols sur Cèze, France.,CEA, IBS, Univ. Grenoble Alpes/CNRS/CEA, 71 avenue des Martyrs CS 10090, F-38044, Grenoble cedex 9, France
| |
Collapse
|
8
|
Havlik M, Marchetti-Deschmann M, Friedbacher G, Messner P, Winkler W, Perez-Burgos L, Tauer C, Allmaier G. Development of a bio-analytical strategy for characterization of vaccine particles combining SEC and nanoES GEMMA. Analyst 2015; 139:1412-9. [PMID: 24473104 DOI: 10.1039/c3an01962d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Commonly used methods for size and shape analysis of bionanoparticles found in vaccines like X-ray crystallography and cryo-electron microscopy are very time-consuming and cost-intensive. The nano-electrospray (nanoES) gas-phase electrophoretic mobility macromolecular analyzer (GEMMA), belonging to the group of ion mobility spectrometers, was used for size determination of vaccine virus particles because it requires less analysis time and investment (no vacuum system). Size exclusion chromatography (SEC) of viral vaccines and production intermediates turned out to be a good purification/isolation method prior to GEMMA, TEM (transmission electron microscopy) and AFM (atomic force microscopy) investigations, as well as providing a GEMMA analysis-compatible buffer. Column materials and different elution buffers were tested for optimal vaccine particle yield. We used a Superdex 200 column with a 50 mM ammonium acetate buffer. In addition, SEC allowed the removal of process-related impurities from the virions of interest. A sample concentrating step or a detergent addition step was also investigated. As a final step of our strategy SEC-purified or untreated vaccine-nanoparticles were further analyzed: (a) by immunological detection with a specific polyclonal antibody (dot blot) to verify the biological functionality, (b) by GEMMA to provide the size of the particles at atmospheric pressure and (c) by AFM and (d) TEM to obtain both size and shape information. The mean diameter of inactivated tick-borne encephalitis virions (i.e. vaccine particles) determined by GEMMA measurement was 46.6 ± 0.5 nm, in contrast to AFM and TEM images providing diameters of about 58 ± 4 and 52 ± 5 nm, respectively.
Collapse
Affiliation(s)
- Marlene Havlik
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sirotkin S, Mermet A, Bergoin M, Ward V, Van Etten JL. Viruses as nanoparticles: structure versus collective dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022718. [PMID: 25215769 DOI: 10.1103/physreve.90.022718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 06/03/2023]
Abstract
In order to test the application of the "nanoparticle" concept to viruses in terms of low-frequency dynamics, large viruses (140-190 nm) were compared to similar-sized polymer colloids using ultra-small-angle x-ray scattering and very-low-frequency Raman or Brillouin scattering. While both viruses and polymer colloids show comparable highly defined morphologies, with comparable abilities of forming self-assembled structures, their respective abilities to confine detectable acoustic vibrations, as expected for such monodisperse systems, differed. Possible reasons for these different behaviors are discussed.
Collapse
Affiliation(s)
- S Sirotkin
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France
| | - A Mermet
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France
| | - M Bergoin
- Laboratoire de Virologie Comparé des Invertébrés, E.P.H.E., Université Montpellier 2, France
| | - V Ward
- University of Otago, Department of Microbology and Immunology, New Zealand
| | - J L Van Etten
- Department of Plant Pathology and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
10
|
Abstract
Nucleocytoplasmic large dsDNA viruses (NCLDVs) encompass an ever-increasing group of large eukaryotic viruses, infecting a wide variety of organisms. The set of core genes shared by all these viruses includes a major capsid protein with a double jelly-roll fold forming an icosahedral capsid, which surrounds a double layer membrane that contains the viral genome. Furthermore, some of these viruses, such as the members of the Mimiviridae and Phycodnaviridae have a unique vertex that is used during infection to transport DNA into the host.
Collapse
Affiliation(s)
- Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Paramecium bursaria chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J Virol 2012; 86:8821-34. [PMID: 22696644 DOI: 10.1128/jvi.00907-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.
Collapse
|
12
|
Wulfmeyer T, Polzer C, Hiepler G, Hamacher K, Shoeman R, Dunigan DD, Van Etten JL, Lolicato M, Moroni A, Thiel G, Meckel T. Structural organization of DNA in chlorella viruses. PLoS One 2012; 7:e30133. [PMID: 22359540 PMCID: PMC3281028 DOI: 10.1371/journal.pone.0030133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes.
Collapse
Affiliation(s)
- Timo Wulfmeyer
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Polzer
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gregor Hiepler
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kay Hamacher
- Computational Biology Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Robert Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - David D. Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Marco Lolicato
- Department of Biology and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| | - Tobias Meckel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Abstract
Atomic force microscopy (AFM) has proven to be a valuable approach to delineate the architectures and detailed structural features of a wide variety of viruses. These have ranged from small plant satellite viruses of only 17 nm to the giant mimivirus of 750 nm diameter, and they have included diverse morphologies such as those represented by HIV, icosahedral particles, vaccinia, and bacteriophages. Because it is a surface technique, it provides images and information that are distinct from those obtained by electron microscopy, and in some cases, at even higher resolution. By enzymatic and chemical dissection of virions, internal structures can be revealed, as well as DNA and RNA. The method is relatively rapid and can be carried out on both fixed and unfixed samples in either air or fluids, including culture media. It is nondestructive and even non-perturbing. It can be applied to individual isolated virus, as well as to infected cells. AFM is still in its early development and holds great promise for further investigation of biological systems at the nanometer scale.
Collapse
Affiliation(s)
- Alexander McPherson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | | |
Collapse
|
14
|
Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proc Natl Acad Sci U S A 2011; 108:14837-42. [PMID: 21873222 DOI: 10.1073/pnas.1107847108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A cryoelectron microscopy 8.5 Å resolution map of the 1,900 Å diameter, icosahedral, internally enveloped Paramecium bursaria chlorella virus was used to interpret structures of the virus at initial stages of cell infection. A fivefold averaged map demonstrated that two minor capsid proteins involved in stabilizing the capsid are missing in the vicinity of the unique vertex. Reconstruction of the virus in the presence of host chlorella cell walls established that the spike at the unique vertex initiates binding to the cell wall, which results in the enveloped nucleocapsid moving closer to the cell. This process is concurrent with the release of the internal viral membrane that was linked to the capsid by many copies of a viral membrane protein in the mature infectous virus. Simultaneously, part of the trisymmetrons around the unique vertex disassemble, probably in part because two minor capsid proteins are absent, causing Paramecium bursaria chlorella virus and the cellular contents to merge, possibly as a result of enzyme(s) within the spike assembly. This may be one of only a few recordings of successive stages of a virus while infecting a eukaryotic host in pseudoatomic detail in three dimensions.
Collapse
|
15
|
Kuznetsov YG, McPherson A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev 2011; 75:268-85. [PMID: 21646429 PMCID: PMC3122623 DOI: 10.1128/mmbr.00041-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM.
Collapse
Affiliation(s)
- Yurii G. Kuznetsov
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 560 Steinhaus Hall, Irvine, California 92697-3900
| | - Alexander McPherson
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 560 Steinhaus Hall, Irvine, California 92697-3900
| |
Collapse
|
16
|
Kuznetsov YG, Chang SC, McPherson A. Investigation of bacteriophage T4 by atomic force microscopy. BACTERIOPHAGE 2011; 1:165-173. [PMID: 22164350 PMCID: PMC3225781 DOI: 10.4161/bact.1.3.17650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/16/2011] [Accepted: 08/06/2011] [Indexed: 11/19/2022]
Abstract
Bacteriophage T4 was visualized using atomic force microscopy (AFM). The images were consistent with, and complementary to electron microscopy images. Head heights of dried particles containing DNA were about 75 nm in length and 60 nm in width, or about 100 nm and 85 nm respectively when scanned in fluid. The diameter of hydrated tail assemblies was 28 nm and their lengths about 130 nm. Seven to eight pronounced, right-handed helical turns with a pitch of 15 nm were evident on the tail assemblies. At the distal end of the tail was a knob shaped mass, presumably the baseplate. The opposite end, where the tail assembly joins the head, was tapered and connected to the portal complex, which was also visible. Phage that had ejected their DNA revealed the internal injection tube of the tail assembly. Heads disrupted by osmotic shock yielded boluses of closely packed DNA that unraveled slowly to expose threads composed of multiple twisted strands of nucleic acid. Assembly errors resulted in the appearance of several percent of the phage exhibiting two rather than one tail assemblies that were consistently oriented at about 72° to one another. No pattern of capsomeres was visible on native T4 heads. A mutant that is negative for the surface proteins hoc and soc, however, clearly revealed the icosahedral arrangement of ring shaped capsomeres on the surface. The hexameric rings have an outside diameter of about 14 nm, a pronounced central depression, and a center-to-center distance of 15 nm. Phage collapsed on cell surfaces appeared to be dissolving, possibly into the cell membrane.
Collapse
Affiliation(s)
- Yuri G Kuznetsov
- Department of Molecular Biology and Biochemistry; University of California Irvine; Irvine, CA USA
| | | | | |
Collapse
|
17
|
Kuznetsov YG, Xiao C, Sun S, Raoult D, Rossmann M, McPherson A. Atomic force microscopy investigation of the giant mimivirus. Virology 2010; 404:127-37. [DOI: 10.1016/j.virol.2010.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Zink M, Grubmüller H. Primary changes of the mechanical properties of Southern Bean Mosaic Virus upon calcium removal. Biophys J 2010; 98:687-95. [PMID: 20159165 DOI: 10.1016/j.bpj.2009.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 01/21/2023] Open
Abstract
The mechanical properties of viral shells are crucial determinates for the pathway and mechanism by which the genetic material leaves the capsid during infection and have therefore been studied by atomic force microscopy as well as by atomistic simulations. The mechanical response to forces from inside the capsid are found to be relevant, especially after ion removal from the shell structure, which is generally assumed to be essential during viral infection; however, atomic force microscopy measurements are restricted to probing the capsids from outside, and the primary effect of ion removal is still inaccessible. To bridge this gap, we performed atomistic force-probe molecular dynamics simulations of the complete solvated icosahedral shell of Southern Bean Mosaic Virus and compared the distribution of elastic constants and yielding forces on the icosahedral shell for probing from inside with the distribution of outside mechanical properties obtained previously. Further, the primary effect of calcium removal on the mechanical properties on both sides, as well as on their spatial distribution, is quantified. Marked differences are seen particularly at the pentamer centers, although only small structural changes occur on the short timescales of the simulation. This unexpected primary effect, hence, precedes subsequent effects due to capsid swelling. In particular, assuming that genome release is preceded by an opening of capsomers instead of a complete capsid bursting, our observed weakening along the fivefold symmetry axes let us suggest pentamers as possible exit ports for RNA release.
Collapse
Affiliation(s)
- Mareike Zink
- Max-Planck-Institute for Biophysical Chemistry, Department of Theoretical and Computational Biophysics, Göttingen, Germany.
| | | |
Collapse
|
19
|
Thiel G, Moroni A, Dunigan D, Van Etten JL. Initial Events Associated with Virus PBCV-1 Infection of Chlorella NC64A. PROGRESS IN BOTANY. FORTSCHRITTE DER BOTANIK 2010; 71:169-183. [PMID: 21152366 PMCID: PMC2997699 DOI: 10.1007/978-3-642-02167-1_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlorella viruses (or chloroviruses) are very large, plaque-forming viruses. The viruses are multilayered structures containing a large double-stranded DNA genome, a lipid bilayered membrane, and an outer icosahedral capsid shell. The viruses replicate in certain isolates of the coccal green alga, Chlorella. Sequence analysis of the 330-kbp genome of Paramecium bursaria Chlorella virus 1 (PBCV-1), the prototype of the virus family Phycodnaviridae, reveals <365 protein-encoding genes and 11 tRNA genes. Products of about 40% of these genes resemble proteins of known function, including many that are unexpected for a virus. Among these is a virus-encoded protein, called Kcv, which forms a functional K(+) channel. This chapter focuses on the initial steps in virus infection and provides a plausible role for the function of the viral K(+) channel in lowering the turgor pressure of the host. This step appears to be a prerequisite for delivery of the viral genome into the host.
Collapse
Affiliation(s)
- Gerhard Thiel
- Institute of Botany, Technische Universitat Darmstadt, 64287, Darmstadt, Germany
| | | | | | | |
Collapse
|
20
|
Giocondi MC, Ronzon F, Nicolai MC, Dosset P, Milhiet PE, Chevalier M, Le Grimellec C. Organization of influenza A virus envelope at neutral and low pH. J Gen Virol 2009; 91:329-38. [DOI: 10.1099/vir.0.015156-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Bigot Y, Renault S, Nicolas J, Moundras C, Demattei MV, Samain S, Bideshi DK, Federici BA. Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses. PLoS One 2009; 4:e6397. [PMID: 19636425 PMCID: PMC2712680 DOI: 10.1371/journal.pone.0006397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/31/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae). METHODOLOGY/PRINCIPAL FINDINGS To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses. CONCLUSIONS Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform), genome configuration (linear to circular), and cytopathology (plasmalemma blebbing to virion-containing vesicles). Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.
Collapse
Affiliation(s)
- Yves Bigot
- Génétique, Immmunothérapie, Chimie et Cancer, UMR CNRS 6239, Université François Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, McPherson A, Rossmann MG. Structural studies of the giant mimivirus. PLoS Biol 2009; 7:e92. [PMID: 19402750 PMCID: PMC2671561 DOI: 10.1371/journal.pbio.1000092] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/11/2009] [Indexed: 01/04/2023] Open
Abstract
Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60°. The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Å. Mimiviruses are larger than any other known virus, yet despite their size, the capsid has been shown to be a regular icosahedron. Using cryo-electron microscopy and atomic force microscopy, we show that the icosahedral symmetry is only approximate, in part because one of the 5-fold vertices has a unique “starfish-shaped” feature and because a better three-dimensional reconstruction was obtained by assuming only 5-fold symmetry. Contrary to expectations, the arrangement of the capsomers on the Mimivirus surface is not as that in many other large icosahedral dsDNA viruses. Instead, the faces of Mimivirus have systematic vacant sites that are surrounded by six capsomers with alternative orientations which differ by about 60°. The structure of Mimivirus was examined with cryo-electron microscopy and atomic force microscopy. The quasi-icosahedral virus has a unique vertex decorated by a starfish-like feature. The capsomers form hexagonal arrays on each face.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yurii G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Siyang Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Susan L Hafenstein
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Victor A Kostyuchenko
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Paul R Chipman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Marie Suzan-Monti
- Unité des Rickettsies, Faculté de Médecine (CNRS) UMR 6020, IFR 48, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine (CNRS) UMR 6020, IFR 48, Marseille, France
| | - Alexander McPherson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Zink M, Grubmüller H. Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 2009; 96:1350-63. [PMID: 19217853 PMCID: PMC2717248 DOI: 10.1016/j.bpj.2008.11.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of viral shells are crucial for viral assembly and infection. To study their distribution and heterogeneity on the viral surface, we performed atomistic force-probe molecular dynamics simulations of the complete shell of southern bean mosaic virus, a prototypical T = 3 virus, in explicit solvent. The simulation system comprised more than 4,500,000 atoms. To facilitate direct comparison with atomic-force microscopy (AFM) measurements, a Lennard-Jones sphere was used as a model of the AFM tip, and was pushed with different velocities toward the capsid protein at 19 different positions on the viral surface. A detailed picture of the spatial distribution of elastic constants and yielding forces was obtained that can explain corresponding heterogeneities observed in previous AFM experiments. Our simulations reveal three different deformation regimes: a prelinear regime of outer surface atom rearrangements, a linear regime of elastic capsid deformation, and a rearrangement regime that describes irreversible structural changes and the transition from elastic to plastic deformation. For both yielding forces and elastic constants, a logarithmic velocity dependency is evident over nearly two decades, the explanation for which requires including nonequilibrium effects within the established theory of enforced barrier crossing.
Collapse
Affiliation(s)
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
24
|
Abstract
The atomic force microscope (AFM) is an important tool for studying biological samples due to its ability to image surfaces under liquids. The AFM operates by physical interaction of a cantilever tip with the molecules on the cell surface. Adhesion forces between the tip and cell surface molecules are detected as cantilever deflections. Thus, the cantilever tip can be used to image live cells with atomic resolution and to probe single molecular events in living cells under physiological conditions. Currently, this is the only technique available that directly provides structural, mechanical, and functional information at high resolution. This unit presents the basic AFM components, modes of operation, useful tips for sample preparation, and a short review of AFM applications in microbiology.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Systems Biology & Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
25
|
Abstract
The term "biological complexes" broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications.
Collapse
|
26
|
Abstract
Vaccinia virus was treated in a controlled manner with various combinations of nonionic detergents, reducing agents, and proteolytic enzymes, and successive products of the reactions were visualized using atomic force microscopy (AFM). Following removal of the outer lipid/protein membrane, a layer 20 to 40 nm in thickness was encountered that was composed of fibrous elements which, under reducing conditions, rapidly decomposed into individual monomers on the substrate. Beneath this layer was the virus core and its prominent lateral bodies, which could be dissociated or degraded with proteases. The core, in addition to the lateral bodies, was composed of a thick, multilayered shell of proteins of diverse sizes and shapes. The shell, which was readily etched with proteases, was thoroughly permeated with pores, or channels. Prolonged exposure to proteases and reductants produced disgorgement of the viral DNA from the remainders of the cores and also left residual, flattened, protease-resistant sacs on the imaging substrate. The DNA was readily visualized by AFM, which revealed some regions to be "soldered" by proteins, others to be heavily complexed with protein, and yet other parts to apparently exist as bundled, naked DNA. Prolonged exposure to proteases deproteinized the DNA, leaving masses of extended, free DNA. Estimates of the interior core volume suggest moderate but not extreme compaction of the genome.
Collapse
|
27
|
Kuznetsov YG, Ulbrich P, Haubova S, Ruml T, McPherson A. Atomic force microscopy investigation of Mason-Pfizer monkey virus and human immunodeficiency virus type 1 reassembled particles. Virology 2006; 360:434-46. [PMID: 17123565 DOI: 10.1016/j.virol.2006.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 09/18/2006] [Accepted: 10/06/2006] [Indexed: 11/22/2022]
Abstract
Particles of DeltaProCANC, a fusion of capsid (CA) and nucleocapsid (NC) protein of Mason-Pfizer monkey virus (M-PMV), which lacks the amino terminal proline, were reassembled in vitro and visualized by atomic force microscopy (AFM). The particles, of 83-84 nm diameter, exhibited ordered domains based on trigonal arrays of prominent rings with center to center distances of 8.7 nm. Imperfect closure of the lattice on the spherical surface was affected by formation of discontinuities. The lattice is consistent only with plane group p3 where one molecule is shared between contiguous rings. There are no pentameric clusters nor evidence that the particles are icosahedral. Tubular structures were also reassembled, in vitro, from two HIV fusion proteins, DeltaProCANC and CANC. The tubes were uniform in diameter, 40 nm, but varied in length to a maximum of 600 nm. They exhibited left handed helical symmetry based on a p6 hexagonal net. The organization of HIV fusion proteins in the tubes is significantly different than for the protein units in the particles of M-PMV DeltaProCANC.
Collapse
Affiliation(s)
- Yu G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 560 SH, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
28
|
Kuznetsov YG, McPherson A. Identification of DNA and RNA from retroviruses using ribonuclease A. SCANNING 2006; 28:278-81. [PMID: 17063767 DOI: 10.1002/sca.4950280506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Retroviruses, such as human immunodeficiency virus (HIV), can be disrupted with chemical agents and made to disgorge their encapsidated nucleic acid. The products can be visualized by atomic force microscopy (AFM). Retroviruses may contain both viral genomic RNA and reverse transcribed DNA produced prior to integration into the host cell genome. It is necessary to know which molecules are RNA and which are DNA in order to interpret the events that transpire during infection. DNA, when imaged by AFM, is generally between one and two nanometers in thickness, more regular in its contours, and it is relatively uniform in height over its entire length; RNA, on the other hand, is less than a nanometer in thickness within single stranded regions, but varies dramatically in height over its length due to the presence of secondary structural domains. These observations, however, are often not definitive. Nonetheless, we have been able to tell one from the other using AFM, by exposing the molecules, in buffer, to moderate concentrations of RNase A. Upon exposure to the enzyme, the DNA, which cannot be cleaved, becomes coated with the protein, and the nucleic acid-protein complex exhibits a height of about three times that of the native molecule, appearing as thick cords. RNA, however, is degraded by the single strand specific RNase A into short, stable, presumably double-stranded segments, reflecting its pattern of secondary structure. Using this approach, we obtained evidence that reverse transcription of RNA into DNA may occur within the retroviral capsid.
Collapse
Affiliation(s)
- Yuri G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
29
|
Onimatsu H, Suganuma K, Uenoyama S, Yamada T. C-terminal repetitive motifs in Vp130 present at the unique vertex of the Chlorovirus capsid are essential for binding to the host Chlorella cell wall. Virology 2006; 353:433-42. [PMID: 16870225 DOI: 10.1016/j.virol.2006.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 04/29/2006] [Accepted: 06/14/2006] [Indexed: 11/16/2022]
Abstract
Previously, Vp130, a chloroviral structural protein, was found to have host-cell-wall-binding activity for NC64A-viruses (PBCV-1 and CVK2). In this study, we have isolated and characterized the corresponding protein from chlorovirus CVGW1, one of Pbi-viruses that have a different host range. In NC64A-viruses, Vp130 consists of a highly conserved N-terminal domain, internal repeats of 70-73 aa motifs and a C-terminal domain occupied by 23-26 tandem repeats of a PAPK motif. However, CVGW1 was found to have a slightly different Vp130 construction where the PAPK repeats were not in the C-terminus but internal. Immunofluorescence microscopy with a specific antibody revealed that the C-terminal region containing the Vp130 repetitive motifs from PBCV-1 and CVK2 was responsible for binding to Chlorella cell walls. Furthermore, by immunoelectron microscopy and immunofluorescence microscopy, Vp130 was localized at a unique vertex of the chlorovirus particle and was found to be masked through binding to the host cells. These results suggested that Vp130 is localized at a unique vertex on the virion, with the C-terminal repetitive units outside for cell wall binding.
Collapse
Affiliation(s)
- Hideki Onimatsu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | |
Collapse
|
30
|
Kienberger F, Pastushenko VP, Kada G, Puntheeranurak T, Chtcheglova L, Riethmueller C, Rankl C, Ebner A, Hinterdorfer P. Improving the contrast of topographical AFM images by a simple averaging filter. Ultramicroscopy 2006; 106:822-8. [PMID: 16675120 DOI: 10.1016/j.ultramic.2005.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 11/17/2005] [Indexed: 11/17/2022]
Abstract
New image-processing methods were applied to atomic force microscopy images in order to visualize small details on the surface of virus particles and living cells. Polynomial line flattening and plane fitting of topographical images were performed as first step of the image processing. In a second step, a sliding window approach was used for low-pass filtering and data smoothing. The size of the filtering window was adjusted to the size of the small details of interest. Subtraction of the smoothed data from the original data resulted in images with enhanced contrast. Topographical features which are usually not visible can be easily discerned in the processed images. The method developed in this study rendered possible the detection of small patterns on viral particles as well as thin cytoskeleton fibers of living cells. It is shown that the sliding window approach gives better results than Fourier-filtering. Our method can be generally applied to increase the contrast of topographical images, especially when small features are to be highlighted on relatively high objects.
Collapse
Affiliation(s)
- F Kienberger
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin S, Lee CK, Lee SY, Kao CL, Lin CW, Wang AB, Hsu SM, Huang LS. Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cell Microbiol 2006; 7:1763-70. [PMID: 16309462 PMCID: PMC7162285 DOI: 10.1111/j.1462-5822.2005.00593.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic force microscopy has been used to probe the surface nanostructures of severe acute respiratory syndrome coronavirus (SARS‐CoV). Single crown‐like virion was directly visualized and quantitative measurements of the dimensions for the structural proteins were provided. A corona of large, distinctive spikes in the envelope was measured after treatment with hydroxyoctanoic acid. High‐resolution images revealed that the surface of each single SARS‐CoV was surrounded with at least 15 spherical spikes having a diameter of 7.29 ± 0.73 nm, which is in close agreement with that of S glycoproteins earlier predicted through the genomes of SARS‐CoV. This study represents the first direct characterization of the surface ultrastructures of SARS‐CoV particles at the nanometre scale and offers new prospects for mapping viral surface properties.
Collapse
Affiliation(s)
- Shiming Lin
- Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Chlorella viruses or chloroviruses are large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330-kbp genome of Paramecium bursaria chlorella virus 1 (PBCV-1), the prototype of this virus family (Phycodnaviridae), predict approximately 366 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site-specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus-encoded K(+) channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV-1 has three types of introns; a self-splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV-1 as well as other related viruses.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi, Japan
| | | | | |
Collapse
|
33
|
Kuznetsov YG, Zhang M, Menees TM, McPherson A, Sandmeyer S. Investigation by atomic force microscopy of the structure of Ty3 retrotransposon particles. J Virol 2005; 79:8032-45. [PMID: 15956549 PMCID: PMC1143757 DOI: 10.1128/jvi.79.13.8032-8045.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae, encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation.
Collapse
Affiliation(s)
- Yurii G Kuznetsov
- Department of Molecular Biology, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | |
Collapse
|