1
|
Mergelsberg ST, Kim H, Buchko GW, Ginovska B. SAXS of murine amelogenin identifies a persistent dimeric species from pH 5.0 to 8.0. J Struct Biol 2024; 216:108131. [PMID: 39368677 DOI: 10.1016/j.jsb.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Amelogenin is an intrinsically disordered protein essential to tooth enamel formation in mammals. Using advanced small angle X-ray scattering (SAXS) capabilities at synchrotrons and computational models, we revisited measuring the quaternary structure of murine amelogenin as a function of pH and phosphorylation at serine-16. The SAXS data shows that at the pH extremes, amelogenin exists as an extended monomer at pH 3.0 (Rg = 38.4 Å) and nanospheres at pH 8.0 (Rg = 84.0 Å), consistent with multiple previous observations. At pH 5.0 and above there was no evidence for a significant population of monomeric species. Instead, at pH 5.0, ∼80 % of the population is a heterogenous dimeric species that increases to ∼100 % at pH 5.5. The dimer population was observed at all pH > 5 conditions in dynamic equilibrium with a species in the pentamer range at pH < 6.5 and nanospheres at pH 8.0. At pH 8.0, ∼40 % of the amelogenin remained in the dimeric state. In general, serine-16 phosphorylation of amelogenin appears to modestly stabilize the population of the dimeric species.
Collapse
Affiliation(s)
| | - Hoshin Kim
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Garry W Buchko
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
2
|
Gabe CM, Bui AT, Lukashova L, Verdelis K, Vasquez B, Beniash E, Margolis HC. Role of amelogenin phosphorylation in regulating dental enamel formation. Matrix Biol 2024; 131:17-29. [PMID: 38759902 PMCID: PMC11363587 DOI: 10.1016/j.matbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.
Collapse
Affiliation(s)
- Claire M Gabe
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Ai Thu Bui
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | | | - Kostas Verdelis
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Endodontics, UPSDM, Pittsburgh, PA, USA
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Henry C Margolis
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, UPSDM, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Betschart MU, Sarem M, Shastri VP, Lüdeke S. Reversible, β-sheet-dependent self-assembly of the phosphoprotein phosvitin is controlled by the concentration and valency of cations. Phys Chem Chem Phys 2022; 24:11791-11800. [PMID: 35506877 DOI: 10.1039/d1cp05493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hyperphosphorylated protein phosvitin (PV) undergoes a pH-dependent transition between PII- and β-sheet secondary structures, a process deemed crucial for its role in the promotion of biogenic apatite formation. The transition occurs surprisingly slowly (minutes to hours). This is consistent with a slow aggregation process involving ionic interactions of charged groups on the protein surface. Herein, we determined the associated transition pK values and time constants through matrix least-squares (MLS) global fitting of a series of pH- and time-dependent circular dichroism (CD) spectra recorded in the presence of different mono-, bi- and trivalent cations. Supporting our results with dynamic light scattering data, we clearly identified a close correlation of β-sheet transition and the formation of small aggregates at low pH. This process is inhibited in the presence of all tested cations with the strongest effects for trivalent cations (Fe3+ and Al3+). In the presence of Ca2+ and Mg2+, larger higher-order particles are formed from PV in the β-sheet conformation, as identified from the interpretation of differential scattering observed in the CD spectra. Our observations are consistent with the existence of a multi-step equilibrium between aggregated and non-aggregated species of PV. The equilibrium is highly sensitive to the environment pH and salt concentration with exceptional behavior in the presence of divalent cations such as Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Martin U Betschart
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Melika Sarem
- Institute for Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.,Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Shin NY, Yamazaki H, Beniash E, Yang X, Margolis SS, Pugach MK, Simmer JP, Margolis HC. Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. J Biol Chem 2020; 295:1943-1959. [PMID: 31919099 DOI: 10.1074/jbc.ra119.010506] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Indexed: 11/06/2022] Open
Abstract
Dental enamel comprises interwoven arrays of extremely long and narrow crystals of carbonated hydroxyapatite called enamel rods. Amelogenin (AMELX) is the predominant extracellular enamel matrix protein and plays an essential role in enamel formation (amelogenesis). Previously, we have demonstrated that full-length AMELX forms higher-order supramolecular assemblies that regulate ordered mineralization in vitro, as observed in enamel rods. Phosphorylation of the sole AMELX phosphorylation site (Ser-16) in vitro greatly enhances its capacity to stabilize amorphous calcium phosphate (ACP), the first mineral phase formed in developing enamel, and prevents apatitic crystal formation. To test our hypothesis that AMELX phosphorylation is critical for amelogenesis, we generated and characterized a hemizygous knockin (KI) mouse model with a phosphorylation-defective Ser-16 to Ala-16 substitution in AMELX. Using EM analysis, we demonstrate that in the absence of phosphorylated AMELX, KI enamel lacks enamel rods, the hallmark component of mammalian enamel, and, unlike WT enamel, appears to be composed of less organized arrays of shorter crystals oriented normal to the dentinoenamel junction. KI enamel also exhibited hypoplasia and numerous surface defects, whereas heterozygous enamel displayed highly variable mosaic structures with both KI and WT features. Importantly, ACP-to-apatitic crystal transformation occurred significantly faster in KI enamel. Secretory KI ameloblasts also lacked Tomes' processes, consistent with the absence of enamel rods, and underwent progressive cell pathology throughout enamel development. In conclusion, AMELX phosphorylation plays critical mechanistic roles in regulating ACP-phase transformation and enamel crystal growth, and in maintaining ameloblast integrity and function during amelogenesis.
Collapse
Affiliation(s)
- Nah-Young Shin
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Hajime Yamazaki
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Xu Yang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Seth S Margolis
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - James P Simmer
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Henry C Margolis
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Periodontics and Preventive Dentistry, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
5
|
Ali S, Farooq I. A Review of the Role of Amelogenin Protein in Enamel Formation and Novel Experimental Techniques to Study its Function. Protein Pept Lett 2019; 26:880-886. [DOI: 10.2174/0929866526666190731120018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022]
Abstract
:Amelognein protein plays a vital role in the formation and mineralization of enamel matrix. Amelogenin structure is complex in nature and researchers have studied it with different experimental techniques. Considering its important role, there is a need to understand this important protein, which has been discussed in detail in this review. In addition, various experimental techniques to study amelogenin protein used previously have been tackled along with their advantages and disadvantages. A selection of 67 relevant articles/book chapters was included in this study. The review concluded that amelogenins act as nanospheres or spacers for the growth of enamel crystals. Various experimental techniques can be used to study amelogenins, however, their advantages and drawbacks should be kept in mind before performing analysis.
Collapse
Affiliation(s)
- Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Sequence characteristics responsible for protein‐protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heat‐shock proteins. Biopolymers 2019; 110:e23319. [DOI: 10.1002/bip.23319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
|
7
|
Ma CW, Zhang J, Dong XQ, Lu JX. Amyloid structure of high-order assembly of Leucine-rich amelogenin revealed by solid-state NMR. J Struct Biol 2018; 206:29-35. [PMID: 29604451 DOI: 10.1016/j.jsb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
High-order assemblies of amelogenin, the major protein in enamel protein matrix, are believed to act as the template for enamel mineral formation. The Leucine-rich amelogenin (LRAP) is a natural splice-variant of amelogenin, a functional protein in vivo, containing conserved domains of amelogenin. In this work, we showed LRAP aggregates hierarchically into assemblies with various sizes including scattered beads, beads-on-a-string and gel-like precipitations in the presence of both calcium and phosphate ions. Solid-state NMR combined with X-ray diffraction and microscopic techniques, was applied to give a picture of LRAP self-assemblies at the atomic level. Our results, for the first time, confirmed LRAP assemblies with different sizes all contained a consistent rigid segment with β-sheet secondary structure (residues 12-27) and the β-sheet segment would further assemble into amyloid-like structures.
Collapse
Affiliation(s)
- Cheng-Wei Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Qi Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Pandya M, Lin T, Li L, Allen MJ, Jin T, Luan X, Diekwisch TGH. Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development. Front Physiol 2017; 8:790. [PMID: 29089900 PMCID: PMC5651044 DOI: 10.3389/fphys.2017.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023] Open
Abstract
The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8–16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit.
Collapse
Affiliation(s)
- Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| | - Tiffani Lin
- UCLA School of Dentistry, Los Angeles, CA, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Leo Li
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Tianquan Jin
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,Biocytogen, Worcester, MA, United States
| | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Bhattacharya P, Ramasamy US, Krueger S, Robinson JW, Tarasevich BJ, Martini A, Cosimbescu L. Trends in Thermoresponsive Behavior of Lipophilic Polymers. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Bhattacharya
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Uma Shantini Ramasamy
- School
of Engineering, University of California-Merced, Merced, California 95343, United States
| | - Susan Krueger
- NIST
Center for Neutron Research, NIST, 100 Bureau Drive, Stop 8562, Gaithersburg, Maryland 20899-8562, United States
| | - Joshua W. Robinson
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Barbara J. Tarasevich
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Ashlie Martini
- School
of Engineering, University of California-Merced, Merced, California 95343, United States
| | - Lelia Cosimbescu
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Margolis HC, Beniash E, Fowler CE. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. J Dent Res 2016; 85:775-93. [PMID: 16931858 DOI: 10.1177/154405910608500902] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Unlike other mineralized tissues, mature dental enamel is primarily (> 95% by weight) composed of apatitic crystals and has a unique hierarchical structure. Due to its high mineral content and organized structure, enamel has exceptional functional properties and is the hardest substance in the human body. Enamel formation (amelogenesis) is the result of highly orchestrated extracellular processes that regulate the nucleation, growth, and organization of forming mineral crystals. However, major aspects of the mechanism of enamel formation are not well-understood, although substantial evidence suggests that protein-protein and protein-mineral interactions play crucial roles in this process. The purpose of this review is a critical evaluation of the present state of knowledge regarding the potential role of the assembly of enamel matrix proteins in the regulation of crystal growth and the structural organization of the resulting enamel tissue. This review primarily focuses on the structure and function of amelogenin, the predominant enamel matrix protein. This review also provides a brief description of novel in vitro approaches that have used synthetic macromolecules ( i.e., surfactants and polymers) to regulate the formation of hierarchical inorganic (composite) structures in a fashion analogous to that believed to take place in biological systems, such as enamel. Accordingly, this review illustrates the potential for developing bio-inspired approaches to mineralized tissue repair and regeneration. In conclusion, the authors present a hypothesis, based on the evidence presented, that the full-length amelogenin uniquely regulates proper enamel formation through a process of cooperative mineralization, and not as a pre-formed matrix.
Collapse
Affiliation(s)
- H C Margolis
- Department of Biomineralization, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| | | | | |
Collapse
|
11
|
Connelly C, Cicuto T, Leavitt J, Petty A, Litman A, Margolis HC, Gerdon AE. Dynamic interactions of amelogenin with hydroxyapatite surfaces are dependent on protein phosphorylation and solution pH. Colloids Surf B Biointerfaces 2016; 148:377-384. [PMID: 27632699 DOI: 10.1016/j.colsurfb.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Amelogenin, the predominant extracellular matrix protein secreted by ameloblasts, has been shown to be essential for proper tooth enamel formation. In this study, amelogenin adsorption to hydroxyapatite (HAP) surfaces, a prototype for enamel mineral, has been studied using a quartz crystal microbalance (QCM) to interrogate effects of protein phosphorylation and solution pH. Dynamic flow-based experiments were conducted at pH 7.4 and 8.0 using native phosphorylated porcine amelogenin (P173) and recombinant non-phosphorylated porcine amelogenin (rP172). Loading capacities (μmol/m2) on HAP surfaces were calculated under all conditions and adsorption affinities (Kad) were calculated when Langmuir isotherm conditions appeared to be met. At pH 8.0, binding characteristics were remarkably similar for the two proteins. However, at pH 7.4 a higher affinity and lower surface loading for the phosphorylated P173 was found compared to any other set of conditions. This suggests that phosphorylated P173 adopts a more extended conformation than non-phosphorylated full-length amelogenin, occupying a larger footprint on the HAP surface. This surface-induced structural difference may help explain why P173 is a more effective inhibitor of spontaneous HAP formation in vitro than rP172. Differences in the viscoelastic properties of P173 and rP172 in the adsorbed state were also observed, consistent with noted differences in HAP binding. These collective findings provide new insight into the important role of amelogenin phosphorylation in the mechanism by which amelogenin regulates enamel crystal formation.
Collapse
Affiliation(s)
| | - Thomas Cicuto
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Jason Leavitt
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Alexander Petty
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Amy Litman
- The Forsyth Institute, Center for Biomineralization, Department of Applied Oral Sciences, Cambridge, MA 02142, USA
| | - Henry C Margolis
- The Forsyth Institute, Center for Biomineralization, Department of Applied Oral Sciences, Cambridge, MA 02142, USA
| | - Aren E Gerdon
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kwak SY, Yamakoshi Y, Simmer JP, Margolis HC. MMP20 Proteolysis of Native Amelogenin Regulates Mineralization In Vitro. J Dent Res 2016; 95:1511-1517. [PMID: 27558264 DOI: 10.1177/0022034516662814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that native phosphorylated full-length porcine amelogenin (P173) and its predominant cleavage product (P148) can inhibit spontaneous calcium phosphate formation in vitro by stabilizing an amorphous calcium phosphate (ACP) precursor phase. Since full-length amelogenin undergoes proteolysis by matrix metalloproteinase 20 (MMP20, enamelysin) soon after secretion, the present study was conducted to assess the effect of amelogenin proteolysis on calcium phosphate formation. Calcium and phosphate were sequentially added to protein solutions without and with added MMP20 (ratio = 200:1) under physiological-like conditions of ionic strength (163 mM) in 50 mM Tris-HCl (pH 7.4) at 37 °C. Protein degradation with time was assessed by gel-electrophoresis, and mineral products formed were characterized by transmission electron microscopy (TEM). MMP20 was found to cleave P173 to primarily generate P148, along with P162, P46-148, and P63/64-148. In sharp contrast, MMP20 did not cleave P148. In addition, the formation of well-aligned bundles of enamel-like hydroxyapatite (HA) crystals was promoted in the presence of P173 with added MMP20, while only ACP particles were seen in the absence of MMP20. Although P148 was found to have a somewhat lower capacity to stabilize ACP and prevent HA formation compared with P173 in the absence of MMP20, essentially no HA formation was observed in the presence of somewhat higher concentrations of P148 regardless of MMP20 addition, due to the lack of observed protein proteolysis. Present findings suggest that ACP transformation to ordered arrays of enamel crystals may be regulated in part by the proteolysis of full-length native amelogenin, while the predominant amelogenin degradation product in developing enamel (e.g., P148) primarily serves to prevent uncontrolled mineral formation during the secretory stage of amelogenesis.
Collapse
Affiliation(s)
- S Y Kwak
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Y Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - J P Simmer
- Department of Biologic and Materials Science, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - H C Margolis
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Apicella A, Marascio M, Colangelo V, Soncini M, Gautieri A, Plummer CJG. Molecular dynamics simulations of the intrinsically disordered protein amelogenin. J Biomol Struct Dyn 2016; 35:1813-1823. [PMID: 27366858 DOI: 10.1080/07391102.2016.1196151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amelogenin refers to a class of intrinsically disordered proteins that are the major constituents of enamel matrix derivative (EMD), an extract of porcine fetal teeth used in regenerative periodontal therapy. Modifications in molecular conformation induced by external stresses, such as changes in temperature or pH, are known to reduce the effectiveness of EMD. However, detailed descriptions of the conformational behavior of native amelogenin are lacking in the open literature. In the present work, a molecular model for the secondary and tertiary structure of the full-length major porcine amelogenin P173 was constructed from its primary sequence by replica exchange molecular dynamics (REMD) simulations. The REMD results for isolated amelogenin molecules at different temperatures were shown to be consistent with the available spectroscopic data. They therefore represent an important first step toward the simulation of the intra- and intermolecular interactions that mediate self-organization in amelogenin and its behavior in the presence of other EMD components under conditions representative of its therapeutic application.
Collapse
Affiliation(s)
- Alessandra Apicella
- a Laboratoire de Technologie des Composites et Polymères (LTC) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12, CH-1015 Lausanne , Switzerland
| | - Matteo Marascio
- a Laboratoire de Technologie des Composites et Polymères (LTC) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12, CH-1015 Lausanne , Switzerland.,b Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32, 20133 Milan , Italy
| | - Vincenzo Colangelo
- b Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32, 20133 Milan , Italy
| | - Monica Soncini
- b Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32, 20133 Milan , Italy
| | - Alfonso Gautieri
- b Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32, 20133 Milan , Italy
| | - Christopher J G Plummer
- a Laboratoire de Technologie des Composites et Polymères (LTC) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12, CH-1015 Lausanne , Switzerland
| |
Collapse
|
14
|
Tao J, Buchko GW, Shaw WJ, De Yoreo JJ, Tarasevich BJ. Sequence-Defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10451-10460. [PMID: 26381243 PMCID: PMC4917396 DOI: 10.1021/acs.langmuir.5b02549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called "nanospheres," aggregates of hundreds of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution; however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin's function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by the synthesis of large crystals of HAP. High-resolution in situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1k(b)T) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating that there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small changes in the primary sequence of amelogenin can affect the disassembly process.
Collapse
|
15
|
Shafiei F, Hossein BG, Farajollahi MM, Fathollah M, Marjan B, Tahereh JK. Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: An in vitro study. SCANNING 2015; 37:179-185. [PMID: 25676352 DOI: 10.1002/sca.21196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
This study was carried out to obtain more information about the assembly of hydroxyapatite bundles formed in the presence of Leucine-Rich Amelogenin Peptide (LRAP) and to evaluate its effect on the remineralization of enamel defects through a biomimetic approach. One or 2 mg/mL LRAP solutions containing 2.5 mM of Ca(+2) and 1.5 mM phosphate were prepared (pH = 7.2) and stored at 37 °C for 24 h. The products of the reaction were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Vickers surface microhardness recovery (SMR%) of acid-etched bovine enamel, with or without LRAP surface treatment, were calculated to evaluate the influence of peptide on the lesion remineralization. Distilled water and 1 or 2 mg/mL LRAP solution (pH = 7.2) were applied on the lesions and the specimens were incubated in mineralization solution (2.5mM Ca(+2) , 1.5mM PO4 (-3) , pH = 7.2) for 24 h. One-way ANOVA and Tukey's multi-comparison tests were used for statistical analysis. The pattern of enamel surface repair was studied using FE-SEM. AFM showed the formation of highly organized hierarchical structures, composed of hydroxyapatite (HA) crystals, similar to the dental enamel microstructure. ANOVA procedure showed significant effect of peptide treatment on the calculated SMR% (p < 0.001). Tukey's test revealed that peptide treated groups had significantly higher values of SMR%. In conclusion, LRAP is able to regulate the formation of HA and enhances the remineralization of acid-etched enamel as a surface treatment agent.
Collapse
Affiliation(s)
- Farhad Shafiei
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Bagheri G Hossein
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medicine/Cellular and Molecular Research Center, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Moztarzadeh Fathollah
- Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Biomaterials Group, Amirkabir University of Technology, Hafez str., Tehran, Iran
| | - Behroozibakhsh Marjan
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Jafarzadeh Kashi Tahereh
- Department of Dental Biomaterials, School of Dentistry, Iranian Tissue Bank & Research Center, Research Center for Science and Technology, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| |
Collapse
|
16
|
|
17
|
Lu JX, Xu YS, Buchko GW, Shaw WJ. Mineral association changes the secondary structure and dynamics of murine amelogenin. J Dent Res 2013; 92:1000-4. [PMID: 24130249 DOI: 10.1177/0022034513504929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenin is one of the key protein constituents responsible for the exquisite organization of the calcium phosphate crystals in enamel. Amelogenin forms into nanospheres in solution, while its association with hydroxyapatite is also essential to enamel development. Structural information of full-length amelogenin in either of these physiologically important forms has the potential to provide mechanistic information; however, these data are limited because of the difficulty of determining the structure of large protein complexes and proteins bound to surfaces. To obtain structural insights into amelogenin during these early stages of enamel development, we used a lysine-specific (13)C-, (15)N-labeled sample of murine amelogenin to provide insight into the structure of the hydroxyapatite (HAP)-binding domains of the protein. A combination of one-and two-dimensional solid-state NMR experiments was used to obtain molecular-level insights into the secondary structure and dynamics of full-length amelogenin within a nanosphere-gel and on the surface of HAP. Regions of amelogenin that appear to be primarily random coil in the nanosphere-gel adopt a β-strand structure and are less mobile with HAP binding, indicative of a structural switch upon binding that may be important in the role of amelogenin in enamel development.
Collapse
Affiliation(s)
- J X Lu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
18
|
Holt C, Carver JA, Ecroyd H, Thorn DC. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 2013; 96:6127-46. [PMID: 23958008 DOI: 10.3168/jds.2013-6831] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
Collapse
Affiliation(s)
- C Holt
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Böhmert L, Girod M, Hansen U, Maul R, Knappe P, Niemann B, Weidner SM, Thünemann AF, Lampen A. Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells. Nanotoxicology 2013; 8:631-42. [DOI: 10.3109/17435390.2013.815284] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Uskoković V. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations. J DISPER SCI TECHNOL 2012; 33:1762-1786. [PMID: 23904690 PMCID: PMC3726226 DOI: 10.1080/01932691.2011.625523] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, Mission Bay Campus, San Francisco, California, USA
| |
Collapse
|
21
|
Martinez-Avila O, Wu S, Kim SJ, Cheng Y, Khan F, Samudrala R, Sali A, Horst JA, Habelitz S. Self-assembly of filamentous amelogenin requires calcium and phosphate: from dimers via nanoribbons to fibrils. Biomacromolecules 2012; 13:3494-502. [PMID: 22974364 PMCID: PMC3496023 DOI: 10.1021/bm300942c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enamel matrix self-assembly has long been suggested as the driving force behind aligned nanofibrous hydroxyapatite formation. We tested if amelogenin, the main enamel matrix protein, can self-assemble into ribbon-like structures in physiologic solutions. Ribbons 17 nm wide were observed to grow several micrometers in length, requiring calcium, phosphate, and pH 4.0-6.0. The pH range suggests that the formation of ion bridges through protonated histidine residues is essential to self-assembly, supported by a statistical analysis of 212 phosphate-binding proteins predicting 12 phosphate-binding histidines. Thermophoretic analysis verified the importance of calcium and phosphate in self-assembly. X-ray scattering characterized amelogenin dimers with dimensions fitting the cross-section of the amelogenin ribbon, leading to the hypothesis that antiparallel dimers are the building blocks of the ribbons. Over 5-7 days, ribbons self-organized into bundles composed of aligned ribbons mimicking the structure of enamel crystallites in enamel rods. These observations confirm reports of filamentous organic components in developing enamel and provide a new model for matrix-templated enamel mineralization.
Collapse
Affiliation(s)
- Olga Martinez-Avila
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| | - Shenping Wu
- Department of Biochemistry & Biophysics, 600 16th Street, Room S312B, San Francisco, CA 94158 University of California
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall Room 503B, 1700 4th Street, San Francisco, CA 94158 University of California
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, 600 16th Street, Room S312B, San Francisco, CA 94158 University of California
| | - Feroz Khan
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| | - Ram Samudrala
- Department of Microbiology, 208 Rosen Building, Box 357735 · Seattle WA 98195 University of Washington
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall Room 503B, 1700 4th Street, San Francisco, CA 94158 University of California
| | - Jeremy A. Horst
- Department of Orofacial Sciences, 513 Parnassus Ave. San Francisco, CA 94143 University of California
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| |
Collapse
|
22
|
Eimar H, Ghadimi E, Marelli B, Vali H, Nazhat SN, Amin WM, Torres J, Ciobanu O, Albuquerque Junior RF, Tamimi F. Regulation of enamel hardness by its crystallographic dimensions. Acta Biomater 2012; 8:3400-10. [PMID: 22684114 DOI: 10.1016/j.actbio.2012.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 01/31/2023]
Abstract
Enamel is a composite biomaterial comprising a minor organic matrix (~2%) and a hierarchically organized inorganic ultrastructure (~96-98%). Surprisingly, to date there is no available information in the literature regarding the possible role of the enamel ultrastructure on the nanoscale level in tooth macroscopic properties. Understanding this relationship is of special interest for restorative purposes in dentistry. Accordingly, this study was designed to investigate how enamel nanocrystals regulate its hardness. We performed microindentation analysis on 100 extracted human teeth. The tooth enamel hardness was quantified and correlated with changes in enamel chemical composition and crystallographic dimensions obtained from Fourier transform infrared spectroscopy and X-ray diffraction, respectively. Enamel hardness was not related to the variability in organic content, but was associated with the size of apatite crystals along the c-axis. This association followed the Hall-Petch model for polycrystalline materials, indicating that the optimal size of apatite nanocrystals (larger than the critical size) provides enamel with the greatest hardness, which enables teeth to survive the heavy wear over a human lifetime.
Collapse
Affiliation(s)
- Hazem Eimar
- Faculty of Dentistry, McGill University, Montreal, QC, Canada H3A 0C7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Le Norcy E, Kwak SY, Allaire M, Fratzl P, Yamakoshi Y, Simmer JP, Margolis HC. Effect of phosphorylation on the interaction of calcium with leucine-rich amelogenin peptide. Eur J Oral Sci 2012; 119 Suppl 1:97-102. [PMID: 22243234 DOI: 10.1111/j.1600-0722.2011.00900.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amelogenin undergoes self-assembly and plays an essential role in guiding enamel mineral formation. The leucine-rich amelogenin peptide (LRAP) is an alternative splice product of the amelogenin gene and is composed of the N terminus (containing the only phosphate group) and the C terminus of full-length amelogenin. This study was conducted to investigate further the role of phosphorylation in LRAP self-assembly in the presence and absence of calcium using small angle X-ray scattering (SAXS). Consistent with our previous dynamic light-scattering findings for phosphorylated (+P) and non-phosphorylated (-P) LRAP, SAXS analyses revealed radii of gyration (R(g)) for LRAP(-P) (46.3-48.0 Å) that were larger than those for LRAP(+P) (25.0-27.4 Å) at pH 7.4. However, added calcium (up to 2.5 mM) induced significant increases in the R(g) of LRAP(+P) (up to 46.4 Å), while it had relatively little effect on LRAP(-P) particle size. Furthermore, SAXS analyses suggested compact folded structures for LRAP(-P) in the presence and absence of calcium, whereas the conformation of LRAP(+P) changed from an unfolded structure to a more compact structure upon the addition of calcium. We conclude that the single phosphate group in LRAP(+P) induces functionally important conformational changes, suggesting that phosphorylation may also influence amelogenin conformation and protein-mineral interactions during the early stages of amelogenesis.
Collapse
Affiliation(s)
- Elvire Le Norcy
- Department of Biomineralization, The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Martinez-Avila OM, Wu S, Cheng Y, Lee R, Khan F, Habelitz S. Self-assembly of amelogenin proteins at the water-oil interface. Eur J Oral Sci 2012; 119 Suppl 1:75-82. [PMID: 22243231 DOI: 10.1111/j.1600-0722.2011.00907.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Self-assembly of amelogenin plays a key role in controlling enamel biomineralization. Recently, we generated self-aligning nanoribbons of amelogenin in water-in-oil emulsions stabilized by the full-length protein (rH174). Here, we tested the hypothesis that the hydrophilic C-terminus is critical for self-assembly of amelogenin into nanoribbons. The self-assembled structures of two amelogenin cleavage products, rH163 and rH146, were compared with structures of rH174 at different pH values and degrees of saturation using atomic force microscopy, electron microscopy, and dynamic light scattering. We observed that the number density of rH174 nanoribbons increased significantly when the initial pH was raised from 4.5 to 5.6. Nanoribbons, as well as unique helical nanostructures, were also readily observed when amelogenin rH146 was used, but showed little tendency for parallel alignment and did not bundle into fibrils like rH174. In contrast, rH163 rarely formed nanoribbons but predominantly assembled into nanospheres under the same conditions. We conclude that the presence of a hydrophilic C-terminus may not be a prerequisite for nanoribbon formation but may be critical for ribbon alignment and subsequent fibril formation. These results highlight the contribution of the hydrophobic domain in the self-assembly of elongated structures of amelogenins. Molecular mechanisms governing these processes based on the formation of reverse micelles are discussed.
Collapse
Affiliation(s)
- Olga M Martinez-Avila
- Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, CA 94143-0758, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principels of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties and the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
26
|
Wang L, Nilsen-Hamilton M. Biomineralization proteins: from vertebrates to bacteria. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1205-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Abstract
Amelogenin plays a key role in the formation of the highly mineralized structure of tooth enamel. During the secretory stage, amelogenin is cleaved gradually by a protease, matrix metalloproteinase-20 (MMP-20), releasing hydrophilic C-terminal peptides. In this study, the biophysical properties of synthetic C-terminal peptides (of 28, 17, and 11 residues), mimicking native peptides, were explored in vitro. A sudden decrease was observed in the zeta (ζ)-potential upon the addition of calcium or phosphates, which was also accompanied by an increased aggregation propensity of the peptides. Under most of the experimental conditions, the particle size increased at a pH 2-3 units higher than the isoelectric point (pI) of the peptides, while the peptides existed as smaller particles (<2 nm) near their pI values and in the acidic range. They showed poor affinity for calcium and phosphates, comparable to full-length amelogenin and variants. The secondary structure determination showed that the 11-amino-acid peptide contained defined secondary structure comprising beta-sheets and turns. Atomic force microscopy analysis revealed the presence of thin, disk-like nanostructures of 54.4 nm diameter for the 28-amino-acid peptide and 54.9 nm diameter for the 11-amino acid peptide, whereas no definite structures were observed for the 17-amino-acid peptide. It is concluded that the amelogenin C-terminal peptides are capable of interacting with calcium and phosphate ions, of self-assembly into nanostructures, and may have some secondary structure, and hence may have some role in enamel synthesis.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| | - Wu Li
- Department of Oral and Craniofacial Sciences, University of California, San Francisco, USA
| | - Stefan Habelitz
- Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Grandin HM, Gemperli AC, Dard M. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:181-202. [PMID: 22070552 DOI: 10.1089/ten.teb.2011.0365] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enamel matrix derivative (EMD), the active component of Emdogain®, is a viable option in the treatment of periodontal disease owing to its ability to regenerate lost tissue. It is believed to mimic odontogenesis, though the details of its functioning remain the focus of current research. OBJECTIVE The aim of this article is to review all relevant literature reporting on the composition/characterization of EMD as well as the effects of EMD, and its components amelogenin and ameloblastin, on the behavior of various cell types in vitro. In this way, insight into the underlying mechanism of regeneration will be garnered and utilized to propose a model for the molecular arrangement and functioning of EMD. METHODS A review of in vitro studies of EMD, or components of EMD, was performed using key words "enamel matrix proteins" OR "EMD" OR "Emdogain" OR "amelogenin" OR "ameloblastin" OR "sheath proteins" AND "cells." Results of this analysis, together with current knowledge on the molecular composition of EMD and the structure and regulation of its components, are then used to present a model of EMD functioning. RESULTS Characterization of the molecular composition of EMD confirmed that amelogenin proteins, including their enzymatically cleaved and alternatively spliced fragments, dominate the protein complex (>90%). A small presence of ameloblastin has also been reported. Analysis of the effects of EMD indicated that gene expression, protein production, proliferation, and differentiation of various cell types are affected and often enhanced by EMD, particularly for periodontal ligament and osteoblastic cell types. EMD also stimulated angiogenesis. In contrast, EMD had a cytostatic effect on epithelial cells. Full-length amelogenin elicited similar effects to EMD, though to a lesser extent. Both the leucine-rich amelogenin peptide and the ameloblastin peptides demonstrated osteogenic effects. A model for molecular structure and functioning of EMD involving nanosphere formation, aggregation, and dissolution is presented. CONCLUSIONS EMD elicits a regenerative response in periodontal tissues that is only partly replicated by amelogenin or ameloblastin components. A synergistic effect among the various proteins and with the cells, as well as a temporal effect, may prove important aspects of the EMD response in vivo.
Collapse
|
29
|
Chen CL, Bromley KM, Moradian-Oldak J, DeYoreo JJ. In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc 2011; 133:17406-13. [PMID: 21916473 PMCID: PMC3427831 DOI: 10.1021/ja206849c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because self-assembly of matrix proteins is a key step in hard tissue mineralization, developing an understanding of the assembly pathways and underlying mechanisms is likely to be important for successful hard tissue engineering. While many studies of matrix protein assembly have been performed on bulk solutions, in vivo these proteins are likely to be in contact with charged biological surfaces composed of lipids, proteins, or minerals. Here we report the results of an in situ atomic force microscopy (AFM) study of self-assembly by amelogenin--the principal protein of the extracellular matrix in developing enamel--in contact with two different charged substrates: hydrophilic negatively charged bare mica and positively charged 3-aminopropyl triethoxysilane (APS) silanized mica. First we demonstrate an AFM-based protocol for determining the size of both amelogenin monomers and oligomers. Using this protocol, we find that, although amelogenin exists primarily as ~26 nm in diameter nanospheres in bulk solution at a pH of 8.0 studied by dynamic light scattering, it behaves dramatically differently upon interacting with charged substrates at the same pH and exhibits complex substrate-dependent assembly pathways and dynamics. On positively charged APS-treated mica surfaces, amelogenin forms a relatively uniform population of decameric oligomers, which then transform into two main populations: higher-order assemblies of oligomers and amelogenin monomers, while on negatively charged bare mica surfaces, it forms a film of monomers that exhibits tip-induced desorption and patterning. The present study represents a successful attempt to identify the size of amelogenin oligomers and to directly monitor assembly and disassembly dynamics on surfaces. The findings have implications for amelogenin-controlled calcium phosphate mineralization in vitro and may offer new insights into in vivo self-assembly of matrix proteins as well as their control over hard tissue formation.
Collapse
Affiliation(s)
- Chun-Long Chen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Keith M. Bromley
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - James J. DeYoreo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| |
Collapse
|
30
|
Bromley KM, Kiss AS, Lokappa SB, Lakshminarayanan R, Fan D, Ndao M, Evans JS, Moradian-Oldak J. Dissecting amelogenin protein nanospheres: characterization of metastable oligomers. J Biol Chem 2011; 286:34643-53. [PMID: 21840988 DOI: 10.1074/jbc.m111.250928] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.
Collapse
Affiliation(s)
- Keith M Bromley
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Le Norcy E, Kwak SY, Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Leucine-rich amelogenin peptides regulate mineralization in vitro. J Dent Res 2011; 90:1091-7. [PMID: 21653221 DOI: 10.1177/0022034511411301] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenin's capacity to regulate enamel formation is related to its conserved N- and C-terminal domains, its ability to self-assemble, and its ability to stabilize amorphous calcium phosphate (ACP) - a capacity enhanced by amelogenin phosphorylation. This in vitro study provides further insight into amelogenin function, using variations of the Leucine-Rich Amelogenin Peptide (LRAP), an alternative splice product comprised solely of amelogenin's N- and C-terminal domains. Peptide self-assembly was studied by dynamic light-scattering and transmission electron microscopy (TEM). TEM, selected area electron diffraction, and Fourier transform-infrared spectroscopy were also used to determine the effect of phosphorylated and non-phosphorylated LRAP on calcium phosphate formation. Results show that phosphorylated and non-phosphorylated LRAP can self-assemble into chain-like structures in a fashion dependent on the C-terminal domain. Notably, this capacity was enhanced by added calcium and to a much greater degree for phosphorylated LRAP. Furthermore, phosphorylated LRAP was found to stabilize ACP and prevent its transformation to hydroxyapatite (HA), while aligned HA crystals formed in the presence of non-phosphorylated LRAP. The N- and C-terminal amelogenin domains in non-phosphorylated LRAP are, therefore, sufficient to guide ACP transformation into ordered bundles of apatite crystals, making LRAP an excellent candidate for biomimetic approaches for enamel regeneration.
Collapse
Affiliation(s)
- E Le Norcy
- Department of Biomineralization, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Fang PA, Margolis HC, Conway JF, Simmer JP, Dickinson GH, Beniash E. Cryogenic transmission electron microscopy study of amelogenin self-assembly at different pH. Cells Tissues Organs 2011; 194:166-70. [PMID: 21597263 DOI: 10.1159/000324250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cryogenic transmission electron microscopy (cryo-EM) was used to explore the self-assembly of recombinant murine amelogenin (rM179) in vitro. Our cryo-EM data showed that amelogenin self-assembly is a strongly pH-dependent process. At pH 4.4 the main fraction of the protein exists in a monomeric form, although some peculiar structures consisting of chains of monomers were also observed. At pH 5.8 large nanospheres comprising ring-like structures ~50 nm in diameter were the most abundant particle class. Similarly, at pH 8.0 amelogenins self-assembled into ring-like oligomers of different sizes, which subsequently assembled into nanospheres 15-20 nm in diameter. Furthermore, at pH 7.2, which is close to a physiological pH, branched chains of nanospheres were observed. Our results show that amelogenin assembly is a multistep hierarchical process and provides new insight into the control of enamel mineralization.
Collapse
Affiliation(s)
- Ping-An Fang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Uskoković V, Li W, Habelitz S. Amelogenin as a Promoter of Nucleation and Crystal Growth of Apatite. JOURNAL OF CRYSTAL GROWTH 2011; 316:106-117. [PMID: 30828107 PMCID: PMC6392086 DOI: 10.1016/j.jcrysgro.2010.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently grown on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.
Collapse
Affiliation(s)
- Vuk Uskoković
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| | - Wu Li
- Department of Oral and Craniofacial Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| | - Stefan Habelitz
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
He X, Wu S, Martinez-Avila O, Cheng Y, Habelitz S. Self-aligning amelogenin nanoribbons in oil-water system. J Struct Biol 2010; 174:203-12. [PMID: 21134461 DOI: 10.1016/j.jsb.2010.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The highly organized microstructure of dental enamel is a result of protein-guided anisotropic growth of apatite nanofibers. It is established that amelogenin proteins, the main constituent of the developing enamel matrix, form nanospheres in vitro, but the amphiphilic nature of the full-length protein conveys the possibility of generating more complex structures as observed with other surfactant-like molecules. This study tested if the use of metastable oil-water emulsions can induce supramolecular assemblies of amelogenin. Recombinant full-length amelogenin, rH174, was mixed into octanol/ethyl acetate preparations of different ratios to form emulsions at pH 4.5 and 7.4. Atomic force and electron microscopy showed the formation of 16.7±1.0nm wide nanoribbons which grew to several micrometer length over a period of days. Nanoribbons formed from reverse micelles by enabling hydrophobic tails of the molecules to interact while preventing the formation of amelogenin nanospheres. Ribbon formation required the presence of calcium and phosphate ions and may be localized at a dark central line along the amelogenin ribbons. The ribbons have a strong tendency to align in parallel maintaining 5-20nm space between each other. The growth rates and number of ribbons were significantly higher at pH 4.5 and related to the metastability of the emulsion. A model for ribbon extension proposes the addition of short segments or amelogenin dimers to the ends of the ribbon. The formation of self-aligning and uniaxially elongating amelogenin structures triggered by the presence of calcium and phosphate may represent a suitable new model for protein controlled mineralization in enamel.
Collapse
Affiliation(s)
- Xiaodong He
- Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
35
|
Wiedemann-Bidlack FB, Kwak SY, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro. J Struct Biol 2010; 173:250-60. [PMID: 21074619 DOI: 10.1016/j.jsb.2010.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.
Collapse
|
36
|
Aichmayer B, Wiedemann-Bidlack FB, Gilow C, Simmer JP, Yamakoshi Y, Emmerling F, Margolis HC, Fratzl P. Amelogenin nanoparticles in suspension: deviations from spherical shape and pH-dependent aggregation. Biomacromolecules 2010; 11:369-76. [PMID: 20038137 PMCID: PMC2817559 DOI: 10.1021/bm900983b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Barbara Aichmayer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tarasevich BJ, Lea S, Shaw WJ. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol 2010; 169:266-76. [PMID: 19850130 PMCID: PMC3084684 DOI: 10.1016/j.jsb.2009.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 10/03/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH(3), and NH(2) end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH(3) and NH(2) surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or "shedding" from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.
Collapse
Affiliation(s)
- Barbara J Tarasevich
- Pacific Northwest National Laboratory, 908 Battelle Blvd., Richland, WA 99352, USA.
| | | | | |
Collapse
|
38
|
Uskokovic V, Castiglione Z, Cubas P, Zhu L, Li W, Habelitz S. Zeta-potential and particle size analysis of human amelogenins. J Dent Res 2009; 89:149-53. [PMID: 20040742 DOI: 10.1177/0022034509354455] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The developing enamel matrix is a highly dynamic system mainly composed of the full-length amelogenin and its proteolytic cleavage products. In this study, size, zeta-potential, and the isoelectric points of nanoparticles of the recombinant full-length human amelogenin (rH174) and two proteolytic products (rH163 and rH146) were analyzed by dynamic light-scattering and electrokinetic measurements. We tested the hypothesis that zeta-potential may be used as a control parameter in directing the self-assembly of amelogenins. Extensive aggregation of amelogenin molecules with the particle size reaching about one micron occurred at a mildly acidic to neutral pH, and coincided with the red shift of the internal fluorescence. Zeta-potential was between +/- 15 mV in the same pH range, indicating that amelogenin aggregation occurred when surface potentials were minimal. This suggests that electrostatic interactions may be another crucial factor, aside from hydrophobic interaction, in the aggregation and hierarchical assembly of spherical particles of amelogenins into supramolecular structures of a higher order.
Collapse
Affiliation(s)
- V Uskokovic
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, 94143, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Tarasevich BJ, Lea S, Bernt W, Engelhard M, Shaw WJ. Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B 2009; 113:1833-42. [PMID: 19199690 DOI: 10.1021/jp804548x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called "nanospheres", spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH(3) end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, X-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH(3) surfaces, and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. Although the small structures may be present in solution even though they are not detected by DLS, we also propose that amelogenin may adsorb by the "shedding" or disassembling of substructures from the nanospheres onto the substrates. This work suggests that amelogenin may have a range of possible quaternary structures that interact with surfaces.
Collapse
Affiliation(s)
- Barbara J Tarasevich
- Pacific Northwest National Laboratory, 908 Battelle Boulevard, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
40
|
Tarasevich BJ, Lea S, Bernt W, Engelhard MH, Shaw WJ. Changes in the quaternary structure of amelogenin when adsorbed onto surfaces. Biopolymers 2009; 91:103-7. [PMID: 19025992 DOI: 10.1002/bip.21095] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amelogenin is a unique protein that self-assembles into spherical aggregates called "nanospheres" and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein-surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self-assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed on the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that "shed" or disassemble from the nanospheres that are present in solution.
Collapse
|
41
|
Buchko GW, Tarasevich BJ, Bekhazi J, Snead ML, Shaw WJ. A solution NMR investigation into the early events of amelogenin nanosphere self-assembly initiated with sodium chloride or calcium chloride. Biochemistry 2009; 47:13215-22. [PMID: 19086270 DOI: 10.1021/bi8018288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using solution-state NMR spectroscopy, new insights into the early events governing amelogenin supramolecular self-assembly have been identified using sodium chloride and calcium chloride to trigger the association. Two-dimensional 1H-15N HSQC spectra were recorded for 15N- and 13C-labeled murine amelogenin as a function of increasing NaCl and CaCl2 concentration beginning with solution conditions of 2% acetic acid at pH 3.0, where amelogenin was monomeric. Residue specific changes in molecular dynamics, manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross-peaks, were observed with the addition of either salt to the protein. With increasing NaCl concentrations, residues between T21 and R31 near the N-terminus were affected first, suggesting that these residues may initiate amelogenin dimerization, the first step in nanosphere assembly. At higher NaCl concentrations, more residues near the N-terminus (Y12-I51) were affected, and with further additions of NaCl, residues near the C-terminus (L141-T171) began to show a similar change in molecular dynamics. With increasing CaCl2 concentrations, a similar stepwise change in molecular dynamics involving essentially the same set of amelogenin residues was observed. As the concentration of either salt was increased, a concomitant increase in the estimated overall rotational correlation time (tau(c)) was observed, consistent with assembly. Self-assembly into a dimer or trimer was established with dynamic light scattering studies under similar conditions that showed an increase in diameter of the smallest species from 4.1 nm in the absence of salt to 10 nm in the presence of salt. These results suggest a possible stepwise interaction mechanism, starting with the N-terminus and followed by the C-terminus, leading to amelogenin nanosphere assembly.
Collapse
Affiliation(s)
- Garry W Buchko
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | |
Collapse
|
42
|
Shaw WJ, Ferris K. Structure, orientation, and dynamics of the C-terminal hexapeptide of LRAP determined using solid-state NMR. J Phys Chem B 2008; 112:16975-81. [PMID: 19368031 PMCID: PMC2771880 DOI: 10.1021/jp808012g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenin is the predominant protein found during enamel development and has been shown to be essential to proper enamel formation. Leucine-rich amelogenin peptide (LRAP) is a naturally occurring splice variant that preserves the charged N- and C-termini of full length amelogenin, regions thought to be crucial in interacting with hydroxaypatite. Particularly, the highly charged C-terminal hexapeptide (KREEVD) is thought to be the region most intimately interacting with hydroxyapatite (HAP). The structure of this charged region was investigated, along with the proximity to the surface and the mobility of two of the residues. The structure was found to be consistent with a random coil or more extended structure, as has been seen for more internalized residues in the C-terminus. The backbone K54(13C'), V58(13C'), and V58(15N) were all found to be close to the surface of HAP, approximately 6.0 angstroms from the nearest 31P atom, suggesting a strong interaction and emphasizing the importance of these residues in interacting with HAP. However, both ends of the hexapeptide at residues K54 and V58 experience significant mobility under hydrated conditions, implying that another portion of the protein helps to stabilize the strong LRAP-HAP interaction. Interestingly, the backbone of the C-terminal third of the protein is consistently 6.0 angstroms from the HAP surface, providing a model in this region of the protein lying flat on the surface with no three-dimensional folding. The combination of these features, that is, a random coil structure, a significant mobility, and a lack of three-dimensional folding in this region of the protein, may have an important functional role, possibly allowing maximum crystal inhibition at low protein concentrations.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratories, Richland, Washington 99354, USA.
| | | |
Collapse
|
43
|
Zou Y, Wang H, Shapiro J, Okamoto C, Brookes S, Lyngstadaas S, Snead M, Paine M. Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1. Biochem J 2007; 408:347-54. [PMID: 17708745 PMCID: PMC2267358 DOI: 10.1042/bj20070881] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 01/13/2023]
Abstract
The enamel matrix protein amelogenin is secreted by ameloblasts into the extracellular space to guide the formation of highly ordered hydroxyapatite mineral crystallites, and, subsequently, is almost completely removed during mineral maturation. Amelogenin interacts with the transmembrane proteins CD63 and LAMP (lysosome-associated membrane protein) 1, which are involved in endocytosis. Exogenously added amelogenin has been observed to move rapidly into CD63/LAMP1-positive vesicles in cultured cells. In the present study, we demonstrate the protein region defined by amino acid residues 103-205 for CD63 interacts not only with amelogenin, but also with other enamel matrix proteins (ameloblastin and enamelin). A detailed characterization of binding regions in amelogenin, CD63 and LAMP1 reveals that the amelogenin region defined by residues PLSPILPELPLEAW is responsible for the interaction with CD63 through residues 165-205, with LAMP1 through residues 226-251, and with the related LAMP2 protein through residues 227-259. We predict that the amelogenin binding region is: (i) hydrophobic; (ii) largely disordered; and (iii) accessible to the external environment. In contrast, the binding region of CD63 is likely to be organized in a '7' shape within the mushroom-like structure of CD63 EC2 (extracellular domain 2). In vivo, the protein interactions between the secreted enamel matrix proteins with the membrane-bound proteins are likely to occur at the specialized secretory surfaces of ameloblast cells called Tomes' processes. Such protein-protein interactions may be required to establish short-term order of the forming matrix and/or to mediate feedback signals to the transcriptional machinery of ameloblasts and/or to remove matrix protein debris during enamel biomineralization.
Collapse
Affiliation(s)
- YanMing Zou
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - HongJun Wang
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Jason L. Shapiro
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Curtis T. Okamoto
- †University of Southern California School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, Los Angeles, CA 90089-9121, U.S.A
| | - Steven J. Brookes
- ‡Department of Oral Biology, Leeds Dental Institute, University of Leeds, Clarendon Way, Leeds LS2 9LU, U.K
| | - S. Petter Lyngstadaas
- §Department of Biomaterials, Faculty of Dentistry, University of Oslo, P.O. Box 1109 Blindern, N-0317 Oslo, Norway
| | - Malcolm L. Snead
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Michael L. Paine
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| |
Collapse
|
44
|
Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro. J Struct Biol 2007; 160:57-69. [PMID: 17719243 PMCID: PMC2375294 DOI: 10.1016/j.jsb.2007.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 11/25/2022]
Abstract
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. This study examines the effect of temperature and pH on amelogenin self-assembly under physiological pH conditions in vitro, using dynamic light scattering, turbidity measurements, and transmission electron microscopy. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated, along with proteolytic cleavage products (rM166 and native P148) lacking the hydrophilic C-terminus of parent molecules. Results indicated that the self-assembly of full-length amelogenin is primarily triggered by pH in the temperature range from 13 to 37 degrees C and not by temperature. Furthermore, very large assemblies of all proteins studied formed through the rearrangement of similarly sized nanospherical particles, although at different pH values: pH 7.7 (P148), pH 7.5 (rM166), pH 7.2 (rP172), and pH 7.2 (rM179). Structural differences were also observed. The full-length molecules formed apparently tightly connected elongated, high-aspect ratio assemblies comprised of small spheres, while the amelogenin cleavage products appeared as loosely associated spherical particles, suggesting that the hydrophilic C-terminus plays an essential role in higher-order amelogenin assembly. Hence, tightly controlled pH values during secretory amelogenesis may serve to regulate the functions of both full-length and cleaved amelogenins.
Collapse
|
45
|
Lakshminarayanan R, Fan D, Du C, Moradian-Oldak J. The role of secondary structure in the entropically driven amelogenin self-assembly. Biophys J 2007; 93:3664-74. [PMID: 17704165 PMCID: PMC2072069 DOI: 10.1529/biophysj.107.113936] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amelogenin, the major extracellular enamel matrix protein, plays critical roles in controlling enamel mineralization. This generally hydrophobic protein self-assembles to form nanosphere structures under certain solution conditions. To gain clearer insight into the mechanisms of amelogenin self-assembly, we first investigated the occurrences of secondary structures within its sequence. By applying isothermal titration calorimetry (ITC), we determined the thermodynamic parameters associated with protein-protein interactions and with conformational changes during self-assembly. The recombinant porcine full length (rP172) and a truncated amelogenin lacking the hydrophilic C-terminal (rP148) were used. Circular dichroism (CD) measurements performed at low concentrations (<5 microM) revealed the presence of the polyproline-type II (PPII) conformation in both amelogenins in addition to alpha-helix and unordered conformations. Structural transition from PPII/unordered to beta-sheet was observed for both proteins at higher concentrations (>62.5 microM) and upon self-assembly. ITC measurements indicated that the self-assembly of rP172 and rP148 is entropically driven (+DeltaS(A)) and energetically favorable (-DeltaG(A)). The magnitude of enthalpy (DeltaH(A)) and entropy changes of assembly (DeltaS(A)) were smaller for rP148 than rP172, whereas the Gibbs free energy change of assembly (DeltaG(A)) was not significantly different. It was found that rP172 had higher PPII content than rP148, and the monomer-multimer equilibrium for rP172 was observed in a narrower protein concentration range when compared to rP148. The large positive enthalpy and entropy changes in both cases are attributed to the release of ordered water molecules and the associated entropy gain (due to the hydrophobic effect). These findings suggest that PPII conformation plays an important role in amelogenin self-assembly and that rP172 assembly is more favorable than rP148. The data are direct evidence for the notion that hydrophobic interactions are the main driving force for amelogenin self-assembly.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
46
|
Gergely C, Szalontai B, Moradian-Oldak J, Cuisinier FJG. Polyelectrolyte-mediated adsorption of amelogenin monomers and nanospheres forming mono- or multilayers. Biomacromolecules 2007; 8:2228-36. [PMID: 17579474 PMCID: PMC2586669 DOI: 10.1021/bm070088+] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have applied optical waveguide lightmode spectroscopy combined with streaming potential measurements and Fourier-transformed infrared spectroscopy to investigate adsorption of amelogenin nanospheres onto polyelectrolytes. The long-term objective was to better understand the chemical nature of these assemblies and to gain further insight into the molecular mechanisms involved during self-assembly. It was found that monolayers of monomers and negatively charged nanospheres of a recombinant amelogenin (rM179) irreversibly adsorbed onto a positively charged polyelectrolyte multilayer films. On the basis of measurements performed at different temperatures, it was demonstrated that intermolecular interactions for the formation of nanospheres were not affected by their adsorption onto polyelectrolytes. Consecutive adsorption of nanospheres resulting in the formation of multilayer structures was possible by using cationic poly(l-lysine) as mediators. N-Acetyl-d-glucosamine (GlcNac) did not disturb the nanosphere-assembled protein's structure, and it only affected the adsorption of monomeric amelogenin. Infrared spectroscopy of adsorbed amelogenin revealed conformational differences between the monomeric and assembled forms of rM179. While there was a considerable amount of alpha-helices in the monomers, beta-turn and beta-sheet structures dominated the assembled proteins. Our work constitutes the first report on a structurally controlled in vitro buildup of an rM179 nanosphere monolayer-based matrix. Our data support the notion that amelogenin self-assembly is mostly driven by hydrophobic interactions and that amelogenin/PEM interactions are dominated by electrostatic forces. We suggest that similar forces can govern amelogenin interactions with non-amelogenins or the mineral phase during enamel biomineralization.
Collapse
Affiliation(s)
- Csilla Gergely
- Groupe d'étude des Semi-Conducteurs, Université Montpellier II, Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
47
|
Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin Promotes the Formation of Elongated Apatite Microstructures in a Controlled Crystallization System. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2007; 111:6398-6404. [PMID: 20333260 PMCID: PMC2843430 DOI: 10.1021/jp0675429] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that play a pivotal role in controlling the oriented and elongated growth of highly ordered apatitic crystals during enamel biomineralization. However, the mechanisms of amelogenin-mediated mineralization have not yet been fully elucidated. Here we report that amelogenin dramatically accelerates the nucleation kinetics by decreasing the induction time in a dose-dependent manner in a controlled constant composition (CC) in vitro crystallization system. Remarkably, at very low protein concentrations, elongated microstructures which are similar in appearance to apatitic crystals in enamel were formed at relatively low supersaturations, through interfacial structural match/synergy between structured amelogenin assemblies and apatite nanocrystallites. This heterogeneous crystallization study provides experimental evidence to support the concept that templating by amelogenin very early in the crystallization process facilitates the formation of developing enamel crystals.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260
| | | | | | | | | |
Collapse
|
48
|
Petta V, Moradian-Oldak J, Yannopoulos SN, Bouropoulos N. Dynamic light scattering study of an amelogenin gel-like matrix in vitro. Eur J Oral Sci 2006; 114 Suppl 1:308-14; discussion 327-9, 382. [PMID: 16674704 DOI: 10.1111/j.1600-0722.2006.00325.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amelogenin self-assembly is critical for the structural organization of apatite crystals during enamel mineralization. The aim of the present study was to investigate the influence of temperature and protein concentration on the aggregation of amelogenin nanospheres at high protein concentrations (>4.4 mg ml-1) in order to obtain an insight into the mechanism of amelogenin self-assembly to form higher-order structures. Amelogenins were extracted from enamel scrapings of unerupted mandibular pig molars. The dynamics of protein solutions were measured using dynamic light scattering (DLS) as a function of temperature and at acidic pH. At pH 4-5.5, three kinds of particles were observed, ranging in size from 3 to 80 nm. At pH 6, heating the solution above approximately 30 degrees C resulted in a drastic change in the solution transparency, from clear to opaque. Low pH showed no aggregation effect, whilst solutions at a slightly acidic pH exhibited diffusion dynamics associated with the onset of aggregation. In addition, at the same temperature range, the hydrodynamic radii of the aggregates increased drastically, by almost one order of magnitude. These observations support the view that hydrophobic interactions are the primary driving force for the pH- and temperature-sensitive self-assembly of amelogenin particles in a 'gel-like' matrix. The trend of self-assembly in a 'gel-like matrix' is similar to that in solution.
Collapse
Affiliation(s)
- Vassiliki Petta
- Foundation for Research and Technology Hellas - Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Patras, Greece
| | | | | | | |
Collapse
|
49
|
Sun Z, Ahsan MM, Wang H, Du C, Abbott C, Moradian-Oldak J. Assembly and processing of an engineered amelogenin proteolytic product (rP148). Eur J Oral Sci 2006; 114 Suppl 1:59-63; discussion 93-5, 379-80. [PMID: 16674664 DOI: 10.1111/j.1600-0722.2006.00296.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to express, characterize, and investigate the self-assembly of a recombinant porcine amelogenin lacking the hydrophilic 24 C-terminal amino acids (rP148). To gain further insight into the function of amelogenin processing during enamel mineralization, this protein was also used as a substrate to examine the action of matrix metalloproteinase-20 (MMP-20). The assembly properties of rP148 were monitored by dynamic light scattering (DLS). In general, rP148 molecules assemble into monomers, dimers, oligomers, and some nanosphere-like particles. Depending on the solution conditions, large aggregates were also observed. Matrix metalloproteinase-20 cleaved the rP148 molecule at a few sites, creating a number of different products, including the tyrosine-rich amelogenin polypeptide (TRAP). Our data suggest that although rP148 self-assembles into small particles, its assembly properties are different from those of the full-length rP172, indicating that the C-terminal 24 amino acids play a critical role in nanosphere assembly. We further demonstrate that MMP-20 digests rP148 in a manner that generates a similar proteolytic pattern, as would be expected to occur in vivo.
Collapse
Affiliation(s)
- Zhi Sun
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
50
|
Fowler CE, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Co-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitro. Eur J Oral Sci 2006; 114 Suppl 1:297-303; discussion 327-9, 382. [PMID: 16674702 DOI: 10.1111/j.1600-0722.2006.00288.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An amorphous silica mineralization technique was used to produce inorganic/protein composites to elucidate the structure and mechanism of formation of amelogenin assemblies, which may play an important role in regulating enamel structure during the initial stages of amelogenesis. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated along with key degradation products (rM166 and native P148) lacking the hydrophilic C terminus found in parent molecules. The resulting products were examined using transmission electron microscopy and/or small-angle X-ray scattering. Using protein concentrations of 0.1-3 mg ml-1, large monodisperse spheres of remarkably similar mean diameters were observed using rM179 (124+/-4 nm) and rP172 (126+/-7 nm). These spheres also exhibited 'internal structure', comprising nearly spherical monodisperse particles of approximately 20 nm in diameter. In the presence of rM166, P148, and bovine serum albumin (control), large unstructured and randomly shaped particles (250-1000 nm) were observed. Without added protein, large dense spherical particles of silica (mean approximately 500 nm) lacking internal structure were produced. These findings demonstrate that full-length amelogenins have the ability to form higher-order structures, whereas amelogenins that lack the hydrophilic C terminus do not. The results also suggest that full-length amelogenin can guide the formation of organized mineralized structures through co-operative interactions between assembling protein and forming mineral.
Collapse
|