1
|
PU SHANGZHI, ZHANG WENHUA, SHI BI. EFFECT OF pH ON STRUCTURE AND STABILITY OF COLLAGEN-LIKE PEPTIDE: INSIGHT FROM MOLECULAR DYNAMICS SIMULATION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations were carried out to investigate the effect of pH on structure and stability of collagen-like peptide. All simulations were performed using the consistent valence force field (CVFF) molecular mechanical force field and isothermal-isobaric ensemble (NPT). The initial geometries of the collagen-like peptide were from an X-ray crystallographic structure. Some analyses from the molecular dynamics trajectories have been completed. The results show that the diameter of collagen-like peptide increases and the volume swells obviously in basic environment; however, the size of peptide changes slightly in acidic environment. The stability of collagen-like peptide decreases in acid and basic environment comparing to neutral environment based on root mean square deviation (RMSD). The number of hydrogen bond formed by peptide has a tendency to decrease in both acidic and basic environment. The average of intra-molecular H-bond is minimal under basic condition, and the average of inter-molecular H-bond between amino acid residues and water molecules is minimal under acid condition. The radial distribution function (RDF) shows that side-chain oxygen atoms are easier to form hydrogen bonds with water than side-chain nitrogen atoms. The interaction of various amino acid residues with water is position dependent. Distance between two triple helices increases markedly under highly basic condition, but changes slightly under highly acidic condition.
Collapse
Affiliation(s)
- SHANG-ZHI PU
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - WEN-HUA ZHANG
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - BI SHI
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Majava V, Polverini E, Mazzini A, Nanekar R, Knoll W, Peters J, Natali F, Baumgärtel P, Kursula I, Kursula P. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One 2010; 5:e10300. [PMID: 20421974 PMCID: PMC2858655 DOI: 10.1371/journal.pone.0010300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | - Rahul Nanekar
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Wiebke Knoll
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
- Institut de Biologie Structurale, Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, Grenoble, France
- Consiglio Nazionale delle Richerche – Operative Group in Grenoble, Grenoble, France
| | | | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Insight into the interaction sites between fatty acid binding proteins and their ligands. J Mol Model 2009; 16:929-38. [DOI: 10.1007/s00894-009-0599-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
|
4
|
Liu JW, Almaguel FG, Bu L, De Leon DD, De Leon M. Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J Neurochem 2008; 106:2015-29. [PMID: 18513372 DOI: 10.1111/j.1471-4159.2008.05507.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Department of Basic Science, Loma Linda University, California 92350, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Correct folding is critical for the biological activities of proteins. As a contribution to a better understanding of the protein (un)folding problem, we studied the effect of temperature and of urea on peptostreptococcal Protein L destructuration. We performed standard molecular dynamics simulations at 300 K, 350 K, 400 K, and 480 K, both in 10 M urea and in water. Protein L followed at least two alternative unfolding pathways. Urea caused the loss of secondary structure acting preferentially on the beta-sheets, while leaving the alpha-helices almost intact; on the contrary, high temperature preserved the beta-sheets and led to a complete loss of the alpha-helices. These data suggest that urea and high temperature act through different unfolding mechanisms, and protein secondary motives reveal a differential sensitivity to various denaturant treatments. As further validation of our results, replica-exchange molecular dynamics simulations of the temperature-induced unfolding process in the presence of urea were performed. This set of simulations allowed us to compute the thermodynamical parameters of the process and confirmed that, in the configurational space of Protein L unfolding, both of the above pathways are accessible, although to a different relative extent.
Collapse
|
6
|
Qualtieri A, Le Pera M, Urso E, Bono F, Valentino P, Scornaienchi MC, Quattrone A. Two-dimensional gel electrophoresis of peripheral nerve proteins: Optimized sample preparation. J Neurosci Methods 2007; 159:125-33. [PMID: 16919754 DOI: 10.1016/j.jneumeth.2006.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
For proteomic analysis, sample preparation plays a crucial role in two-dimensional gel electrophoresis (2DE), since, very often, each tissue or cell culture requires specific treatments. In the present paper, we report a sample preparation procedure suitable for 2DE that was done on peripheral nerve using bovine sciatic nerves and human sural nerve biopsies. We obtained an appreciable reduction of tissue heterogeneity using protein extracts obtained from nerve-fiber bundles instead of the entire nerve. In addition, we optimized 2DE protein separation using a combination of CHAPS, Triton X-100, and SB3-10 detergents in an isoelectric-focusing (IEF) buffer. The reported experimental procedures appear to be essential for 2DE separation of peripheral nerve proteins for the establishment of a reference map.
Collapse
Affiliation(s)
- Antonio Qualtieri
- Institute of Neurological Sciences, National Research Council (CNR), Contrada Burga, 87050 Mangone, Cosenza, Italy.
| | | | | | | | | | | | | |
Collapse
|