1
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
2
|
Wollman AJ, Muchová K, Chromiková Z, Wilkinson AJ, Barák I, Leake MC. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput Struct Biotechnol J 2020; 18:1474-1486. [PMID: 32637045 PMCID: PMC7327415 DOI: 10.1016/j.csbj.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark C. Leake
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
4
|
Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. Single-molecule techniques in biophysics: a review of the progress in methods and applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024601. [PMID: 28869217 DOI: 10.1088/1361-6633/aa8a02] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Collapse
Affiliation(s)
- Helen Miller
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Pang SM, Le S, Yan J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol Cell 2017; 110:65-76. [DOI: 10.1111/boc.201700061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Si Ming Pang
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
| | - Shimin Le
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
| | - Jie Yan
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; 117546 Singapore
| |
Collapse
|
7
|
Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 2017; 37:BSR20170031. [PMID: 28694303 PMCID: PMC5520217 DOI: 10.1042/bsr20170031] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K.
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| |
Collapse
|
8
|
Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys Rev 2017; 9:225-237. [PMID: 28510118 PMCID: PMC5498327 DOI: 10.1007/s12551-017-0263-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.
Collapse
|
9
|
Phosphorylating Titin's Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force. Biophys J 2016; 109:2592-2601. [PMID: 26682816 DOI: 10.1016/j.bpj.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022] Open
Abstract
Titin is a large filamentous protein that is responsible for the passive force of the cardiac sarcomere. Titin's force is generated by its I-band region, which includes the cardiac-specific N2B element. The N2B element consists of three immunoglobulin domains, two small unique sequence insertions, and a large 575-residue unique sequence, the N2B-Us. Posttranslational modifications of the N2B element are thought to regulate passive force, but the underlying mechanisms are unknown. Increased passive-force levels characterize diastolic stiffening in heart-failure patients, and it is critical to understand the underlying molecular mechanisms and identify therapeutic targets. Here, we used single-molecule force spectroscopy to study the mechanical effects of the kinases calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) and extracellular signal-regulated kinase 2 (ERK2) on the single-molecule mechanics of the N2B element. Both CaMKIIδ and ERK2 were found to phosphorylate the N2B element, and single-molecule force spectroscopy revealed an increase in the persistence length (Lp) of the molecule, indicating that the bending rigidity of the molecule was increased. Experiments performed under oxidizing conditions and with a recombinant N2B element that had a simplified domain composition provided evidence that the Lp increase requires the N2B-Us of the N2B element. Mechanical experiments were also performed on skinned myocardium before and after phosphorylation. The results revealed a large (∼30%) passive force reduction caused by CaMKIIδ and a much smaller (∼6%) reduction caused by ERK2. These findings support the notion that the important kinases ERK2 and CaMKIIδ can alter the passive force of myocytes in the heart (although CaMKIIδ appears to be more potent) during physiological and pathophysiological states.
Collapse
|
10
|
Zhou Z, Leake MC. Force Spectroscopy in Studying Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:307-27. [PMID: 27193551 DOI: 10.1007/978-3-319-32189-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biophysical force spectroscopy tools-for example, optical tweezers, magnetic tweezers, atomic force microscopy-have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here, we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case, we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design.
Collapse
Affiliation(s)
- Zhaokun Zhou
- Departments of Physics and Biology, Biological Physical Sciences Institute, University of York, York, YO10 5DD, UK.
| | - Mark C Leake
- Departments of Physics and Biology, Biological Physical Sciences Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
11
|
Abstract
Our understanding of the processes involved in infection has grown enormously in the past decade due in part to emerging methods of biophysics. This new insight has been enabled through advances in interdisciplinary experimental technologies and theoretical methods at the cutting-edge interface of the life and physical sciences. For example, this has involved several state-of-the-art biophysical tools used in conjunction with molecular and cell biology approaches, which enable investigation of infection in living cells. There are also new, emerging interfacial science tools which enable significant improvements to the resolution of quantitative measurements both in space and time. These include single-molecule biophysics methods and super-resolution microscopy approaches. These new technological tools in particular have underpinned much new understanding of dynamic processes of infection at a molecular length scale. Also, there are many valuable advances made recently in theoretical approaches of biophysics which enable advances in predictive modelling to generate new understanding of infection. Here, I discuss these advances, and take stock on our knowledge of the biophysics of infection and discuss where future advances may lead.
Collapse
Affiliation(s)
- Mark C Leake
- Department of Physics and Biology, Biological Physical Sciences Institute (BPSI), University of York, York, YO10 5DD, UK.
| |
Collapse
|
12
|
Salmov NN, Gritsyna YV, Ulanova AD, Vikhlyantsev IM, Podlubnaya ZA. On the role of titin phosphorylation in the development of muscular atrophy. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Wollman AJM, Leake MC. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss 2015; 184:401-24. [PMID: 26419209 DOI: 10.1039/c5fd00077g] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of protein concentrations in single functional cells, and enables the distributions of concentrations across a cell population to be measured. This could be useful in investigating several cellular processes that are mediated by proteins, especially where changes in protein concentration in a single cell in response to changes in the extracellular chemical environment are subtle and rapid and may be smaller than the variability across a cell population.
Collapse
|
14
|
Abstract
The giant protein titin forms a unique filament network in cardiomyocytes, which engages in both mechanical and signaling functions of the heart. TTN, which encodes titin, is also a major human disease gene. In this review, we cover the roles of cardiac titin in normal and failing hearts, with a special emphasis on the contribution of titin to diastolic stiffness. We provide an update on disease-associated titin mutations in cardiac and skeletal muscles and summarize what is known about the impact of protein-protein interactions on titin properties and functions. We discuss the importance of titin-isoform shifts and titin phosphorylation, as well as titin modifications related to oxidative stress, in adjusting the diastolic stiffness of the healthy and the failing heart. Along the way we distinguish among titin alterations in systolic and in diastolic heart failure and ponder the evidence for titin stiffness as a potential target for pharmacological intervention in heart disease.
Collapse
Affiliation(s)
- Wolfgang A Linke
- From the Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
15
|
Kötter S, Unger A, Hamdani N, Lang P, Vorgerd M, Nagel-Steger L, Linke WA. Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. ACTA ACUST UNITED AC 2014; 204:187-202. [PMID: 24421331 PMCID: PMC3897184 DOI: 10.1083/jcb.201306077] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small heat shock proteins translocate to unfolded titin Ig domains under stress conditions to prevent titin aggregation and myocyte stiffening. In myocytes, small heat shock proteins (sHSPs) are preferentially translocated under stress to the sarcomeres. The functional implications of this translocation are poorly understood. We show here that HSP27 and αB-crystallin associated with immunoglobulin-like (Ig) domain-containing regions, but not the disordered PEVK domain (titin region rich in proline, glutamate, valine, and lysine), of the titin springs. In sarcomeres, sHSP binding to titin was actin filament independent and promoted by factors that increased titin Ig unfolding, including sarcomere stretch and the expression of stiff titin isoforms. Titin spring elements behaved predominantly as monomers in vitro. However, unfolded Ig segments aggregated, preferentially under acidic conditions, and αB-crystallin prevented this aggregation. Disordered regions did not aggregate. Promoting titin Ig unfolding in cardiomyocytes caused elevated stiffness under acidic stress, but HSP27 or αB-crystallin suppressed this stiffening. In diseased human muscle and heart, both sHSPs associated with the titin springs, in contrast to the cytosolic/Z-disk localization seen in healthy muscle/heart. We conclude that aggregation of unfolded titin Ig domains stiffens myocytes and that sHSPs translocate to these domains to prevent this aggregation.
Collapse
Affiliation(s)
- Sebastian Kötter
- Department of Cardiovascular Physiology and 2 Neurological University Clinic Bergmannsheil, Ruhr University Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys Chem 2013; 180-181:37-43. [DOI: 10.1016/j.bpc.2013.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 01/17/2023]
|
17
|
Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S, Plettig L, López B, Ottenheijm CA, Becher PM, González A, Tschöpe C, Díez J, Linke WA, Leite-Moreira AF, Paulus WJ. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 2013; 6:1239-49. [PMID: 24014826 DOI: 10.1161/circheartfailure.113.000539] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Obesity and diabetes mellitus are important metabolic risk factors and frequent comorbidities in heart failure with preserved ejection fraction. They contribute to myocardial diastolic dysfunction (DD) through collagen deposition or titin modification. The relative importance for myocardial DD of collagen deposition and titin modification was investigated in obese, diabetic ZSF1 rats after heart failure with preserved ejection fraction development at 20 weeks. METHODS AND RESULTS Four groups of rats (Wistar-Kyoto, n=11; lean ZSF1, n=11; obese ZSF1, n=11, and obese ZSF1 with high-fat diet, n=11) were followed up for 20 weeks with repeat metabolic, renal, and echocardiographic evaluations and hemodynamically assessed at euthanization. Myocardial collagen, collagen cross-linking, titin isoforms, and phosphorylation were also determined. Resting tension (Fpassive)-sarcomere length relations were obtained in small muscle strips before and after KCl-KI treatment, which unanchors titin and allows contributions of titin and extracellular matrix to Fpassive to be discerned. At 20 weeks, the lean ZSF1 group was hypertensive, whereas both obese ZSF1 groups were hypertensive and diabetic. Only the obese ZSF1 groups had developed heart failure with preserved ejection fraction, which was evident from increased lung weight, preserved left ventricular ejection fraction, and left ventricular DD. The underlying myocardial DD was obvious from high muscle strip stiffness, which was largely (±80%) attributable to titin hypophosphorylation. The latter occurred specifically at the S3991 site of the elastic N2Bus segment and at the S12884 site of the PEVK segment. CONCLUSIONS Obese ZSF1 rats developed heart failure with preserved ejection fraction during a 20-week time span. Titin hypophosphorylation importantly contributed to the underlying myocardial DD.
Collapse
Affiliation(s)
- Nazha Hamdani
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brantley JN, Bailey CB, Wiggins KM, Keatinge-Clay AT, Bielawski CW. Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polym Chem 2013. [DOI: 10.1039/c3py00001j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:204-17. [PMID: 22910434 DOI: 10.1016/j.pbiomolbio.2012.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 01/08/2023]
Abstract
The passive stiffness of cardiac muscle plays a critical role in ventricular filling during diastole and is determined by the extracellular matrix and the sarcomeric protein titin. Titin spans from the Z-disk to the M-band of the sarcomere and also contains a large extensible region that acts as a molecular spring and develops passive force during sarcomere stretch. This extensible segment is titin's I-band region, and its force-generating mechanical properties determine titin-based passive tension. The properties of titin's I-band region can be modulated by isoform splicing and post-translational modification and are intimately linked to diastolic function. This review discusses the physical origin of titin-based passive tension, the mechanisms that alter titin stiffness, and titin's role in stress-sensing signaling pathways.
Collapse
|
20
|
Dey A, Szoszkiewicz R. Complete noise analysis of a simple force spectroscopy AFM setup and its applications to study nanomechanics of mammalian Notch 1 protein. NANOTECHNOLOGY 2012; 23:175101. [PMID: 22481314 DOI: 10.1088/0957-4484/23/17/175101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a complete noise analysis and application of a custom made AFM force spectroscopy setup on pulling a recombinant protein with an NRR domain of mouse Notch 1. Our table top AFM setup is affordable, has an open architecture, and is easily transferable to other laboratories. Its calculated noise characteristics are dominated by the Brownian noise with 2% non-Brownian components integrated over the first thermally induced resonance of a typical cantilever. For a typical SiN cantilever with a force constant of ~15 pN nm(-1) and in water the force sensitivity and resolution are less than 10 pN, and the corresponding deflection sensitivities are less than 100 pm Hz(-1/2). Also, we obtain a sub-ms time resolution in detecting the protein length change, and only few ms cantilever response times as measured in the force clamp mode on a well-known protein standard. Using this setup we investigate force-induced conformational transitions in the NRR region of a mouse Notch 1. Notch is an important protein related to leukemia and breast cancers in humans. We demonstrate that it is feasible to develop AFM-based studies of the force-induced conformational transitions in Notch. Our results match recent steered molecular dynamics simulations of the NRR unfolding and constitute a first step towards a detailed study of Notch activation with AFM.
Collapse
Affiliation(s)
- Ashim Dey
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
21
|
Oroz J, Hervás R, Carrión-Vázquez M. Unequivocal single-molecule force spectroscopy of proteins by AFM using pFS vectors. Biophys J 2012; 102:682-90. [PMID: 22325292 DOI: 10.1016/j.bpj.2011.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 11/28/2022] Open
Abstract
Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins.
Collapse
Affiliation(s)
- Javier Oroz
- Instituto Cajal/CSIC, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, IMDEA Nanociencia, Madrid, Spain
| | | | | |
Collapse
|
22
|
Ottenheijm CAC, Granzier H. Role of titin in skeletal muscle function and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:105-22. [PMID: 20824522 DOI: 10.1007/978-1-4419-6366-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers recent developments in the titin field. Most recent reviews have discussed titin's role in cardiac function: here we will mainly focus on skeletal muscle, and discuss recent advances in the understanding of titin's role in skeletal muscle function and disease.
Collapse
|
23
|
Garcia TI, Oberhauser AF, Braun W. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains. Proteins 2009; 75:706-18. [PMID: 19003986 DOI: 10.1002/prot.22281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mechanisms that determine mechanical stabilities of protein folds remain elusive. Our understanding of these mechanisms is vital to both bioengineering efforts and to the better understanding and eventual treatment of pathogenic mutations affecting mechanically important proteins such as titin. We present a new approach to analyze data from single-molecule force spectroscopy for different domains of the giant muscle protein titin. The region of titin found in the I-band of a sarcomere is composed of about 40 Ig-domains and is exposed to force under normal physiological conditions and connects the free-hanging ends of the myosin filaments to the Z-disc. Recent single-molecule force spectroscopy data show a mechanical hierarchy in the I-band domains. Domains near the C-terminus in this region unfold at forces two to three times greater than domains near the beginning of the I-band. Though all of these Ig-domains are thought to share a fold and topology common to members of the Ig-like fold family, the sequences of neighboring domains vary greatly with an average sequence identity of only 25%. We examine in this study the relation of these unique mechanical stabilities of each I-band Ig domain to specific, conserved physical-chemical properties of amino acid sequences in related Ig domains. We find that the sequences of each individual titin Ig domain are very highly conserved, with an average sequence identity of 79% across species that are divergent as humans, chickens, and zebra fish. This indicates that the mechanical properties of each domain are well conserved and tailored to its unique position in the titin molecule. We used the PCPMer software to determine the conservation of amino acid properties in titin Ig domains grouped by unfolding forces into "strong" and "weak" families. We found two motifs unique to each family that may have some role in determining the mechanical properties of these Ig domains. A detailed statistical analysis of properties of individual residues revealed several positions that displayed differentially conserved properties in strong and weak families. In contrast to previous studies, we find evidence that suggests that the mechanical stability of Ig domains is determined by several residues scattered across the beta-sandwich fold, and force sensitive residues are not only confined to the A'-G region.
Collapse
Affiliation(s)
- Tzintzuni I Garcia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
24
|
Grützner A, Garcia-Manyes S, Kötter S, Badilla CL, Fernandez JM, Linke WA. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J 2009; 97:825-34. [PMID: 19651040 DOI: 10.1016/j.bpj.2009.05.037] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/10/2009] [Accepted: 05/26/2009] [Indexed: 01/05/2023] Open
Abstract
The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiffness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation. Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-like (Ig-)domains in titin's spring region have a potential for S-S formation. Using single-molecule atomic force microscopy (AFM) force-extension measurements on recombinant Ig-domain polyprotein constructs, we show that titin Ig-modules contain no stabilizing disulfide bridge, contrary to previous belief. However, we demonstrate that the human N2-B-unique sequence (N2-B(us)), a cardiac-specific, physiologically extensible titin segment comprising 572 amino-acid residues, contains up to three disulfide bridges under oxidizing conditions. AFM force spectroscopy on recombinant N2-B(us) molecules demonstrated a much shorter contour length in the absence of a reducing agent than in its presence, consistent with intramolecular S-S bonding. In stretch experiments on isolated human heart myofibrils, the reducing agent thioredoxin lowered titin-based stiffness to a degree that could be explained (using entropic elasticity theory) by altered extensibility solely of the N2-B(us). We conclude that increased oxidant stress can elevate titin-based stiffness of cardiomyocytes, which may contribute to the global myocardial stiffening frequently seen in the aging or failing heart.
Collapse
Affiliation(s)
- Anika Grützner
- Physiology and Biophysics Unit, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
26
|
|
27
|
Zhu Y, Bogomolovas J, Labeit S, Granzier H. Single molecule force spectroscopy of the cardiac titin N2B element: effects of the molecular chaperone alphaB-crystallin with disease-causing mutations. J Biol Chem 2009; 284:13914-13923. [PMID: 19282282 DOI: 10.1074/jbc.m809743200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock protein alphaB-crystallin interacts with N2B-Us, a large unique sequence found in the N2B element of cardiac titin. Using single molecule force spectroscopy, we studied the effect of alphaB-crystallin on the N2B-Us and its flanking Ig-like domains. Ig domains from the proximal tandem Ig segment of titin were also studied. The effect of wild type alphaB-crystallin on the single molecule force-extension curve was determined as well as that of mutant alphaB-crystallins harboring the dilated cardiomyopathy missense mutation, R157H, or the desmin-related myopathy mutation, R120G. Results revealed that wild type alphaB-crystallin decreased the persistence length of the N2B-Us (from approximately 0.7 to approximately 0.2 nm) but did not alter its contour length. alphaB-crystallin also increased the unfolding force of the Ig domains that flank the N2B-Us (by 51 +/- 3 piconewtons); the rate constant of unfolding at zero force was estimated to be approximately 17-fold lower in the presence of alphaB-crystallin (1.4 x 10(-4) s(-1) versus 2.4 x 10(-3) s(-1)). We also found that alphaB-crystallin increased the unfolding force of Ig domains from the proximal tandem Ig segment by 28 +/- 6 piconewtons. The effects of alphaB-crystallin were attenuated by the R157H mutation (but were still significant) and were absent when using the R120G mutant. We conclude that alphaB-crystallin protects titin from damage by lowering the persistence length of the N2B-Us and reducing the Ig domain unfolding probability. Our finding that this effect is either attenuated (R157H) or lost (R120G) in disease causing alphaB-crystallin mutations suggests that the interaction between alphaB-crystallin and titin is important for normal heart function.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Biology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| | - Julius Bogomolovas
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Henk Granzier
- Department of Molecular and Cellular Biology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217.
| |
Collapse
|
28
|
Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 2008; 104:87-94. [PMID: 19023132 DOI: 10.1161/circresaha.108.184408] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sarcomeric titin springs influence myocardial distensibility and passive stiffness. Titin isoform composition and protein kinase (PK)A-dependent titin phosphorylation are variables contributing to diastolic heart function. However, diastolic tone, relaxation speed, and left ventricular extensibility are also altered by PKG activation. We used back-phosphorylation assays to determine whether PKG can phosphorylate titin and affect titin-based stiffness in skinned myofibers and isolated myofibrils. PKG in the presence of 8-pCPT-cGMP (cGMP) phosphorylated the 2 main cardiac titin isoforms, N2BA and N2B, in human and canine left ventricles. In human myofibers/myofibrils dephosphorylated before mechanical analysis, passive stiffness dropped 10% to 20% on application of cGMP-PKG. Autoradiography and anti-phosphoserine blotting of recombinant human I-band titin domains established that PKG phosphorylates the N2-B and N2-A domains of titin. Using site-directed mutagenesis, serine residue S469 near the COOH terminus of the cardiac N2-B-unique sequence (N2-Bus) was identified as a PKG and PKA phosphorylation site. To address the mechanism of the PKG effect on titin stiffness, single-molecule atomic force microscopy force-extension experiments were performed on engineered N2-Bus-containing constructs. The presence of cGMP-PKG increased the bending rigidity of the N2-Bus to a degree that explained the overall PKG-mediated decrease in cardiomyofibrillar stiffness. Thus, the mechanically relevant site of PKG-induced titin phosphorylation is most likely in the N2-Bus; phosphorylation of other titin sites could affect protein-protein interactions. The results suggest that reducing titin stiffness by PKG-dependent phosphorylation of the N2-Bus can benefit diastolic function. Failing human hearts revealed a deficit for basal titin phosphorylation compared to donor hearts, which may contribute to diastolic dysfunction in heart failure.
Collapse
Affiliation(s)
- Martina Krüger
- Physiology and Biophysics Unit, University of Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oreopoulos J, Yip CM. Combined scanning probe and total internal reflection fluorescence microscopy. Methods 2008; 46:2-10. [PMID: 18602010 DOI: 10.1016/j.ymeth.2008.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/22/2008] [Indexed: 11/19/2022] Open
Abstract
Combining scanning probe and optical microscopy represents a powerful approach for investigating structure-function relationships and dynamics of biomolecules and biomolecular assemblies, often in situ and in real-time. This platform technology allows us to obtain three-dimensional images of individual molecules with nanometer resolution, while simultaneously characterizing their structure and interactions though complementary techniques such as optical microscopy and spectroscopy. We describe herein the practical strategies for the coupling of scanning probe and total internal reflection fluorescence microscopy along with challenges and the potential applications of such platforms, with a particular focus on their application to the study of biomolecular interactions at membrane surfaces.
Collapse
Affiliation(s)
- John Oreopoulos
- Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, Ont., Canada M5S 3E1
| | | |
Collapse
|
30
|
Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 2008; 36:740-55. [PMID: 17763461 DOI: 10.1002/mus.20886] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The striated muscle sarcomere contains, in addition to thin and thick filaments, a third myofilament comprised of titin. The extensible region of titin spans the I-band region of the sarcomere and develops passive force in stretched sarcomeres. This force positions the A-bands in the middle of the sarcomere, maintains sarcomere length homogeneity and, importantly, is responsible for myocardial passive tension that determines diastolic filling. Recent work suggests that smooth muscle expresses a truncated titin isoform with a short extensible region that is predicted to develop high passive force levels. Several mechanisms for tuning the titin-based passive tension have been discovered that involve alternative splicing as well as posttranslational modification, mechanisms that are at play both during normal muscle function as well as during disease.
Collapse
Affiliation(s)
- Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology Physiology, and Physiology, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
31
|
Oberhauser AF, Carrión-Vázquez M. Mechanical biochemistry of proteins one molecule at a time. J Biol Chem 2008; 283:6617-21. [PMID: 18195002 DOI: 10.1074/jbc.r700050200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.
Collapse
Affiliation(s)
- Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
32
|
Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflugers Arch 2007; 456:101-15. [DOI: 10.1007/s00424-007-0389-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/02/2007] [Indexed: 01/24/2023]
|
33
|
Valbuena A, Oroz J, Vera AM, Gimeno A, Gómez-Herrero J, Carrión-Vázquez M. Quasi-simultaneous imaging/pulling analysis of single polyprotein molecules by atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:113707. [PMID: 18052480 DOI: 10.1063/1.2794732] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Most of studies in protein nanomechanics have used the atomic force microscope (AFM) in its force-measuring mode on immobilized protein repeats (polyproteins) as single-molecule markers. Here, we add imaging capabilities to a standard, state-of-the-art AFM "puller" and integrate the most powerful programs of analysis available for both AFM modes. This unique instrument allows high-resolution, quasi-simultaneous imaging/force spectroscopy in aqueous solution. We demonstrate its capabilities using polyproteins of a model system (titin I27 domain). This tool should greatly facilitate the development of a much needed universal functionalization system for AFM, one that should allow better sample control and an improved efficiency of protein immobilization.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Instituto Cajal, CSIC and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), E-28002 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Granzier H, Radke M, Royal J, Wu Y, Irving TC, Gotthardt M, Labeit S. Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle. Am J Physiol Regul Integr Comp Physiol 2007; 293:R557-67. [PMID: 17522126 DOI: 10.1152/ajpregu.00001.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Titin is a giant filamentous elastic protein that spans from the Z-disk to M-band regions of the sarcomere. The I-band region of titin is extensible and develops passive force in stretched sarcomeres. This force has been implicated as a factor involved in regulating cardiac contraction. To better understand the adaptation in the extensible region of titin, we report the sequence and annotation of the chicken and mouse titin genes and compare them to the human titin gene. Our results reveal a high degree of conservation within the genomic region encoding the A-band segment of titin, consistent with the structural similarity of vertebrate A-bands. In contrast, the genomic region encoding the Z-disk and I-band segments is highly divergent. This is most prominent within the central I-band segment, where chicken titin has fewer but larger PEVK exons (up to 1,992 bp). Furthermore, in mouse titin we found two LINE repeats that are inserted in the Z-disk and I-band regions, the regions that account for most of the splice isoform diversity. Transcript studies show that a group of 55 I-band exons is differentially expressed in chicken titin. Consistent with a large degree of titin isoform plasticity and variation in PEVK content, chicken skeletal titins range in size from approximately 3,000 to approximately 3,700 kDa and vary greatly in passive mechanical properties. Low-angle X-ray diffraction experiments reveal significant differences in myofilament lattice spacing that correlate with titin isoform expression. We conclude that titin splice diversity regulates structure and biomechanics of the sarcomere.
Collapse
Affiliation(s)
- Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Wegner Hall, Rm. 205, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Krüger M, Linke WA. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 2006; 27:435-44. [PMID: 16897574 DOI: 10.1007/s10974-006-9090-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Protein kinase-A (PKA) is activated during beta-adrenergic stimulation of the heart and is known to phosphorylate several sarcomeric proteins including the giant polypeptide titin. A PKA phosphorylation site on titin is located within the N2B-unique sequence, which is present in the elastic segment of the two major isoforms of cardiac titin, N2B and N2BA, but not in the skeletal-muscle isoforms of the N2A-type. In bovine and rat cardiomyocytes, PKA-mediated phosphorylation decreases passive tension (PT), an effect ascribed to titin phosphorylation. Whether titin is phosphorylated by PKA upon beta-adrenergic stimulation in human heart has not been shown to date. Here we report that PKA induces phosphorylation of N2B and N2BA titin isoforms, as well as a characteristic proteolytic fragment of titin, T2, in human donor hearts. The PKA-induced phosphorylation signals were stronger when myofilaments were first de-phosphorylated by protein phosphatase-1, suggesting inherent phosphorylation of titin in human heart. Titin phosphorylation was associated with a reduction in PT of skinned human cardiac strips; the relative decrease was higher at shorter than at longer physiological sarcomere lengths. The PKA-dependent PT drop was substantially larger when fibers were pre-treated with protein phosphatase-1, indicating that inherent phosphorylation of titin is important for the basal myocardial PT level. Mechanical measurements on isolated myofibrils from rat heart confirmed the PKA effect on passive stiffness and also showed a more pronounced effect in the presence of reducing agent, DTT. In contrast, PKA did not alter the PT of single skinned rat diaphragm muscle fibers; however, the kinase was still able to phosphorylate the skeletal N2A-titin isoform, which lacks the N2B-unique sequence. Thus, an additional phosphorylation site in titin may exist outside the cardiac N2B-unique sequence. We conclude that PKA mediates phosphorylation of titin in normal human myocardium. Titin phosphorylation lowers titin-based passive stiffness in heart but not in skeletal muscle.
Collapse
Affiliation(s)
- Martina Krüger
- Physiology and Biophysics Unit, University of Muenster, Schlossplatz 5, D-48149, Muenster, Germany
| | | |
Collapse
|