1
|
Yang Z, Zang D, Li H, Zhang Z, Zhang F, Han R. Self-supervised noise modeling and sparsity guided electron tomography volumetric image denoising. Ultramicroscopy 2024; 255:113860. [PMID: 37844382 DOI: 10.1016/j.ultramic.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Cryo-Electron Tomography (cryo-ET) is a revolutionary technique for visualizing macromolecular structures in near-native states. However, the physical limitations of imaging instruments lead to cryo-ET volumetric images with very low Signal-to-Noise Ratio (SNR) with complex noise, which has a side effect on the downstream analysis of the characteristics of observed macromolecules. Additionally, existing methods for image denoising are difficult to be well generalized to the complex noise in cryo-ET volumes. In this work, we propose a self-supervised deep learning model for cryo-ET volumetric image denoising based on noise modeling and sparsity guidance (NMSG), achieved by learning the noise distribution in noisy cryo-ET volumes and introducing sparsity guidance to ensure smoothness. Firstly, a Generative Adversarial Network (GAN) is utilized to learn noise distribution in cryo-ET volumes and generate noisy volumes pair from single volume. Then, a new loss function is devised to both ensure the recovery of ultrastructure and local smoothness. Experiments are done on five real cryo-ET datasets and three simulated cryo-ET datasets. The comprehensive experimental results demonstrate that our method can perform reliable denoising by training on single noisy volume, achieving better results than state-of-the-art single volume-based methods and competitive with methods trained on large-scale datasets.
Collapse
Affiliation(s)
- Zhidong Yang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Zang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongjia Li
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Zhang
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
The complexin C-terminal amphipathic helix stabilizes the fusion pore open state by sculpting membranes. Nat Struct Mol Biol 2022; 29:97-107. [DOI: 10.1038/s41594-021-00716-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
|
3
|
黄 新, 李 莎, 高 嵩. [Progress in filters for denoising cryo-electron microscopy images]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:425-433. [PMID: 33879921 PMCID: PMC8072428 DOI: 10.19723/j.issn.1671-167x.2021.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/12/2023]
Abstract
Cryo-electron microscopy (cryo-EM) imaging has the unique potential to bridge the gap between cellular and molecular biology. Therefore, cryo-EM three-dimensional (3D) reconstruction has been rapidly developed in recent several years and applied widely in life science research to reveal the structures of large macromolecular assemblies and cellular complexes, which is critical to understanding their functions at all scales. Although the technical breakthrough in recent years, for example, the introduction of the direct detection device (DDD) camera and the development of cryo-EM software tools, made the three cryo-EM pioneers share the 2017 Nobel Prize, several bottleneck problems still exist that hamper the further increase of the resolution of single-particle reconstruction and hold back the application of in situ subnanometer structure determination by cryo-tomography. Radiation damage is still the key limiting factor in cryo-EM. In order to minimize the radiation damage and preserve as much resolution as possible, the imaging conditions of a low dose and weak contrast make cryo-EM images extremely noisy with very low signal-to-noise ratios (SNR), generally about 0.1. The high noise will obscure the fine details in cryo-EM images or reconstructed maps. Thus, a method to reduce the level of noise and improve the resolution has become an important issue. In this paper, we systematically reviewed and compared some robust filters in the cryo-EM field of two aspects, single-particle analysis (SPA) and cryo-electron tomography (cryo-ET), and especially studied their applications, such as, 3D reconstruction, visualization, structural analysis, and interpretation. Conventional approaches to noise reduction in cryo-EM imaging include the use of Gaussian, median, and bilateral filters, among other means. A Gaussian filter selects an appropriate filter kernel to conduct spatial convolution with a noisy image. Although noise with larger standard deviations in cryo-EM images can be suppressed and satisfactory performance is achieved in certain cases, this filter also blurs the images and over-smooths small-scale image features. This is especially detrimental when precise quantitative information needs to be extracted. Unlike a Gaussian filter, a median filter is based on the order statistics of the image and selects the median intensity in a window of the adjacent pixels to denoise the image. Although this filter is robust to outliers, it suffers from aliasing problems that possibly result in incorrect information for cryo-EM structure interpretation. A bilateral filter is a nonlinear filter that performs spatial weighted averaging and is more selective in the pixels allowing to contribute to the weighted sum, excluding the high frequency noise from the smoothing process. Thus, this filter can be used to smooth out noise while maintaining the edge details, which is similar to an anisotropic diffusion filter, and distinct from a Gaussian filter but its utility will be limited when the SNR of a cryo-EM image is very low. Generally, spatial filtering methods have the disadvantage of losing image resolution when reducing noise. A wavelet transform can exploit the wavelet's natural ability to separate a signal from noise at multiple image scales to allow for joint resolution in both the spatial and frequency domains, and thus has the potential to outperform existing methods. The modified wavelet shrinkage filter we developed can offer a remarkable improvement in image quality with a good compromise between detail preservation and noise smoothing. We expect that our review study on different filters can provide benefits to cryo-EM applications and the interpretation of biological structures.
Collapse
Affiliation(s)
- 新瑞 黄
- 北京大学基础医学院生物化学与生物物理学系,北京 100191Department of Biochemistry and Biophysics, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 莎 李
- 北京大学医学部医学技术研究院,北京 100191Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - 嵩 高
- 北京大学医学部医学技术研究院,北京 100191Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
Kumar A, Anderson KL, Swift MF, Hanein D, Volkmann N, Schwartz MA. Local Tension on Talin in Focal Adhesions Correlates with F-Actin Alignment at the Nanometer Scale. Biophys J 2018; 115:1569-1579. [PMID: 30274833 PMCID: PMC6372196 DOI: 10.1016/j.bpj.2018.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 01/31/2023] Open
Abstract
Cellular force transmission and mechanotransduction are critical in embryogenesis, normal physiology, and many diseases. Talin plays a key role in these processes by linking integrins to force-generating actomyosin. Using the previously characterized FRET-based talin tension sensor, we observed variations of tension both between and within individual focal adhesions in the same cell. Assembling and sliding adhesions showed gradients with higher talin tension toward the cell center, whereas mature, stable adhesions had uniform talin tension. Total talin accumulation was maximal in high-tension regions; by contrast, vinculin intensity was flat or maximal at the adhesion center, and actin intensity was maximal toward the cell center. To investigate mechanism, we combined talin tension imaging with cellular cryotomography to visualize the correlated actin organization at nanometer resolution. Regions of high talin tension had highly aligned linear actin filaments, whereas regions of low tension had less-well-aligned F-actin. These results reveal an orchestrated spatiotemporal relationship between talin tension, actin/vinculin localization, local actin organization, and focal adhesion dynamics.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Medicine (Cardiology) and Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut
| | - Karen L Anderson
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Mark F Swift
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California.
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Martin A Schwartz
- Department of Medicine (Cardiology) and Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut; Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Anderson KL, Page C, Swift MF, Hanein D, Volkmann N. Marker-free method for accurate alignment between correlated light, cryo-light, and electron cryo-microscopy data using sample support features. J Struct Biol 2018; 201:46-51. [PMID: 29113849 PMCID: PMC5748349 DOI: 10.1016/j.jsb.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022]
Abstract
Combining fluorescence microscopy with electron cryo-tomography allows, in principle, spatial localization of tagged macromolecular assemblies and structural features within the cellular environment. To allow precise localization and scale integration between the two disparate imaging modalities, accurate alignment procedures are needed. Here, we describe a marker-free method for aligning images from light or cryo-light fluorescence microscopy and from electron cryo-microscopy that takes advantage of sample support features, namely the holes in the carbon film. We find that the accuracy of this method, as judged by prediction errors of the hole center coordinates, is better than 100 nm.
Collapse
Affiliation(s)
- Karen L Anderson
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Christopher Page
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Mark F Swift
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Dorit Hanein
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA
| | - Niels Volkmann
- Sanford-Burnham-Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla, CA, USA.
| |
Collapse
|
6
|
|
7
|
Ali RA, Mehdi AM, Rothnagel R, Hamilton NA, Gerle C, Landsberg MJ, Hankamer B. RAZA: A Rapid 3D z-crossings algorithm to segment electron tomograms and extract organelles and macromolecules. J Struct Biol 2017; 200:73-86. [PMID: 29032142 DOI: 10.1016/j.jsb.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Resolving the 3D architecture of cells to atomic resolution is one of the most ambitious challenges of cellular and structural biology. Central to this process is the ability to automate tomogram segmentation to identify sub-cellular components, facilitate molecular docking and annotate detected objects with associated metadata. Here we demonstrate that RAZA (Rapid 3D z-crossings algorithm) provides a robust, accurate, intuitive, fast, and generally applicable segmentation algorithm capable of detecting organelles, membranes, macromolecular assemblies and extrinsic membrane protein domains. RAZA defines each continuous contour within a tomogram as a discrete object and extracts a set of 3D structural fingerprints (major, middle and minor axes, surface area and volume), enabling selective, semi-automated segmentation and object extraction. RAZA takes advantage of the fact that the underlying algorithm is a true 3D edge detector, allowing the axes of a detected object to be defined, independent of its random orientation within a cellular tomogram. The selectivity of object segmentation and extraction can be controlled by specifying a user-defined detection tolerance threshold for each fingerprint parameter, within which segmented objects must fall and/or by altering the number of search parameters, to define morphologically similar structures. We demonstrate the capability of RAZA to selectively extract subgroups of organelles (mitochondria) and macromolecular assemblies (ribosomes) from cellular tomograms. Furthermore, the ability of RAZA to define objects and their contours, provides a basis for molecular docking and rapid tomogram annotation.
Collapse
Affiliation(s)
- Rubbiya A Ali
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia; Department of Electrical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Michael J Landsberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Hecksel CW, Darrow MC, Dai W, Galaz-Montoya JG, Chin JA, Mitchell PG, Chen S, Jakana J, Schmid MF, Chiu W. Quantifying Variability of Manual Annotation in Cryo-Electron Tomograms. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:487-96. [PMID: 27225525 PMCID: PMC5111626 DOI: 10.1017/s1431927616000799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although acknowledged to be variable and subjective, manual annotation of cryo-electron tomography data is commonly used to answer structural questions and to create a "ground truth" for evaluation of automated segmentation algorithms. Validation of such annotation is lacking, but is critical for understanding the reproducibility of manual annotations. Here, we used voxel-based similarity scores for a variety of specimens, ranging in complexity and segmented by several annotators, to quantify the variation among their annotations. In addition, we have identified procedures for merging annotations to reduce variability, thereby increasing the reliability of manual annotation. Based on our analyses, we find that it is necessary to combine multiple manual annotations to increase the confidence level for answering structural questions. We also make recommendations to guide algorithm development for automated annotation of features of interest.
Collapse
Affiliation(s)
- Corey W. Hecksel
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele C. Darrow
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Dai
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica A. Chin
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick G. Mitchell
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shurui Chen
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jemba Jakana
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F. Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Jonić S, Vargas J, Melero R, Gómez-Blanco J, Carazo JM, Sorzano COS. Denoising of high-resolution single-particle electron-microscopy density maps by their approximation using three-dimensional Gaussian functions. J Struct Biol 2016; 194:423-33. [PMID: 27085420 DOI: 10.1016/j.jsb.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022]
Abstract
Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated macromolecular complexes is the method of choice to obtain the structure of complexes that cannot be easily studied by other experimental methods due to their flexibility or large size. An increasing number of macromolecular structures are currently being obtained at subnanometer resolution but the interpretation of structural details in such EM-derived maps is often difficult because of noise at these high-frequency signal components that reduces their contrast. In this paper, we show that the method for EM density-map approximation using Gaussian functions can be used for denoising of single-particle EM maps of high (typically subnanometer) resolution. We show its denoising performance using simulated and experimental EM density maps of several complexes.
Collapse
Affiliation(s)
- S Jonić
- IMPMC, Sorbonne Universités - CNRS UMR 7590, UPMC Univ Paris 6, MNHN, IRD UMR 206, 75005 Paris, France.
| | - J Vargas
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - R Melero
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - J Gómez-Blanco
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Fernandez JJ, Laugks U, Schaffer M, Bäuerlein FJB, Khoshouei M, Baumeister W, Lucic V. Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms. Biophys J 2015; 110:850-9. [PMID: 26743046 DOI: 10.1016/j.bpj.2015.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023] Open
Abstract
Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation.
Collapse
Affiliation(s)
- Jose-Jesus Fernandez
- Centro Nacional de Biotecnologia (Consejo Superior de Investigaciones Científicas), Madrid, Spain.
| | - Ulrike Laugks
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | - Vladan Lucic
- Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
11
|
Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates. COMPUTER ANALYSIS OF IMAGES AND PATTERNS : PROCEEDINGS OF THE ... INTERNATIONAL CONFERENCE ON AUTOMATIC IMAGE PROCESSING. INTERNATIONAL CONFERENCE ON AUTOMATIC IMAGE PROCESSING 2015; 9256:423-431. [PMID: 30058003 DOI: 10.1007/978-3-319-23192-1_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron tomography is the most widely applicable method for obtaining 3D information by electron microscopy. In the field of biology it has been realized that electron tomography is capable of providing a complete, molecular resolution three-dimensional mapping of entire proteoms. However, to realize this goal, information needs to be extracted efficiently from these tomograms. Owing to extremely low signal-to-noise ratios, this task is mostly carried out manually. Standard template matching approaches tend to generate large amounts of false positives. We developed an alternative method for feature extraction in biological electron tomography based on reduced representation templates, approximating the search model by a small number of anchor points used to calculate the scoring function. Using this approach we see a reduction of about 50% false positives with matched-filter approaches to below 5%. At the same time, false negatives stay below 5%, thus essentially matching the performance one would expect from human operators.
Collapse
|
12
|
Xia K, Wei GW. Persistent topology for cryo-EM data analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:n/a-n/a. [PMID: 25851063 DOI: 10.1002/cnm.2719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
In this work, we introduce persistent homology for the analysis of cryo-electron microscopy (cryo-EM) density maps. We identify the topological fingerprint or topological signature of noise, which is widespread in cryo-EM data. For low signal-to-noise ratio (SNR) volumetric data, intrinsic topological features of biomolecular structures are indistinguishable from noise. To remove noise, we employ geometric flows that are found to preserve the intrinsic topological fingerprints of cryo-EM structures and diminish the topological signature of noise. In particular, persistent homology enables us to visualize the gradual separation of the topological fingerprints of cryo-EM structures from those of noise during the denoising process, which gives rise to a practical procedure for prescribing a noise threshold to extract cryo-EM structure information from noise contaminated data after certain iterations of the geometric flow equation. To further demonstrate the utility of persistent homology for cryo-EM data analysis, we consider a microtubule intermediate structure Electron Microscopy Data (EMD 1129). Three helix models, an alpha-tubulin monomer model, an alpha-tubulin and beta-tubulin model, and an alpha-tubulin and beta-tubulin dimer model, are constructed to fit the cryo-EM data. The least square fitting leads to similarly high correlation coefficients, which indicates that structure determination via optimization is an ill-posed inverse problem. However, these models have dramatically different topological fingerprints. Especially, linkages or connectivities that discriminate one model from another, play little role in the traditional density fitting or optimization but are very sensitive and crucial to topological fingerprints. The intrinsic topological features of the microtubule data are identified after topological denoising. By a comparison of the topological fingerprints of the original data and those of three models, we found that the third model is topologically favored. The present work offers persistent homology based new strategies for topological denoising and for resolving ill-posed inverse problems.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
13
|
Schulze HG, Turner RFB. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra. APPLIED SPECTROSCOPY 2015; 69:643-664. [PMID: 25954920 DOI: 10.1366/14-07709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput information extraction from large numbers of Raman spectra is becoming an increasingly taxing problem due to the proliferation of new applications enabled using advances in instrumentation. Fortunately, in many of these applications, the entire process can be automated, yielding reproducibly good results with significant time and cost savings. Information extraction consists of two stages, preprocessing and analysis. We focus here on the preprocessing stage, which typically involves several steps, such as calibration, background subtraction, baseline flattening, artifact removal, smoothing, and so on, before the resulting spectra can be further analyzed. Because the results of some of these steps can affect the performance of subsequent ones, attention must be given to the sequencing of steps, the compatibility of these sequences, and the propensity of each step to generate spectral distortions. We outline here important considerations to effect full automation of Raman spectral preprocessing: what is considered full automation; putative general principles to effect full automation; the proper sequencing of processing and analysis steps; conflicts and circularities arising from sequencing; and the need for, and approaches to, preprocessing quality control. These considerations are discussed and illustrated with biological and biomedical examples reflecting both successful and faulty preprocessing.
Collapse
Affiliation(s)
- H Georg Schulze
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | | |
Collapse
|
14
|
Tsai WT, Hassan A, Sarkar P, Correa J, Metlagel Z, Jorgens DM, Auer M. From voxels to knowledge: a practical guide to the segmentation of complex electron microscopy 3D-data. J Vis Exp 2014:e51673. [PMID: 25145678 PMCID: PMC4448944 DOI: 10.3791/51673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Collapse
Affiliation(s)
- Wen-Ting Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory
| | - Ahmed Hassan
- Life Sciences Division, Lawrence Berkeley National Laboratory
| | - Purbasha Sarkar
- Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory
| | - Joaquin Correa
- Life Sciences Division, Lawrence Berkeley National Laboratory; National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory
| | - Zoltan Metlagel
- Life Sciences Division, Lawrence Berkeley National Laboratory
| | | | - Manfred Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory; Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory;
| |
Collapse
|
15
|
Local regularization of tilt projections reduces artifacts in electron tomography. J Struct Biol 2014; 186:28-37. [PMID: 24632448 DOI: 10.1016/j.jsb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 11/21/2022]
Abstract
Electron tomography produces very high resolution 3D image volumes useful for investigating the structure and function of cellular components. Unfortunately, unavoidable discontinuities and physical constraints in the acquisition geometry lead to a range of artifacts that can affect the reconstructed image. In particular, highly electron dense regions, such as gold nanoparticles, can hide proximal biological structures and degrade the overall quality of the reconstructed tomograms. In this work we introduce a pre-reconstruction non-conservative non-linear isotropic diffusion (NID) filter that automatically identifies and reduces local irregularities in the tilt projections. We illustrate the improvement in quality obtained using this approach for reconstructed tomograms generated from samples of malaria parasite-infected red blood cells. A quantitative and qualitative evaluation for our approach on both simulated and real data is provided.
Collapse
|
16
|
Martinez-Sanchez A, Garcia I, Asano S, Lucic V, Fernandez JJ. Robust membrane detection based on tensor voting for electron tomography. J Struct Biol 2014; 186:49-61. [PMID: 24625523 DOI: 10.1016/j.jsb.2014.02.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure.
Collapse
Affiliation(s)
- Antonio Martinez-Sanchez
- Supercomputing and Algorithms Group, Associated Unit CSIC-UAL, Universidad de Almeria, 04120 Almeria, Spain
| | - Inmaculada Garcia
- Supercomputing and Algorithms Group, Dept. Computer Architecture, Universidad de Malaga, 29080 Malaga, Spain
| | - Shoh Asano
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Vladan Lucic
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jose-Jesus Fernandez
- National Centre for Biotechnology, National Research Council (CNB-CSIC), Campus UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Three-dimensional reconstructions of actin filaments capped by Arp2/3 complex. Eur J Cell Biol 2014; 93:179-83. [PMID: 24552843 DOI: 10.1016/j.ejcb.2014.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 11/20/2022] Open
Abstract
The primary function of Arp2/3 complex is the generation of free barbed ends by nucleating new filaments from the sides of pre-existing filaments. The pathway of branch formation is complex and involves nucleation promoting factors, actin monomers and nucleotides. A less prominent function of Arp2/3 complex is capping of actin filament pointed ends. Here we show, using electron microscopy, electron tomography, and image reconstruction of negatively-stained samples at ∼2-3nm resolution, that Arp2/3 complex bound to the pointed ends of actin filaments has a conformation similar to that in the branch junction with the Arps arranged in an actin-filament like configuration. This is direct evidence for the existence of two distinct activation pathways for Arp2/3 complex, one in the context of branch formation, one in the context of pointed-end capping, with essentially the same conformational end point.
Collapse
|
18
|
Xia K, Feng X, Chen Z, Tong Y, Wei GW. Multiscale geometric modeling of macromolecules I: Cartesian representation. JOURNAL OF COMPUTATIONAL PHYSICS 2014; 257:10.1016/j.jcp.2013.09.034. [PMID: 24327772 PMCID: PMC3855405 DOI: 10.1016/j.jcp.2013.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Xin Feng
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Zhan Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
- Corresponding author.
| | - Guo Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
- Corresponding author.
| |
Collapse
|
19
|
Thomasson MS, Macnaughtan MA. Microscopy basics and the study of actin-actin-binding protein interactions. Anal Biochem 2013; 443:156-65. [PMID: 24044992 DOI: 10.1016/j.ab.2013.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs.
Collapse
Affiliation(s)
- Maggie S Thomasson
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
20
|
Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, Hanein D, Wilson BS. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci 2013; 126:4913-25. [PMID: 23986485 DOI: 10.1242/jcs.128876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways.
Collapse
Affiliation(s)
- Cédric Cleyrat
- Department of Pathology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Feng X, Xia K, Tong Y, Wei GW. Geometric modeling of subcellular structures, organelles, and multiprotein complexes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:1198-223. [PMID: 23212797 PMCID: PMC3568658 DOI: 10.1002/cnm.2532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 11/02/2012] [Indexed: 05/11/2023]
Abstract
Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multiprotein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes.
Collapse
Affiliation(s)
- Xin Feng
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | | | | | | |
Collapse
|
22
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
23
|
Developing a denoising filter for electron microscopy and tomography data in the cloud. Biophys Rev 2012; 4:223-229. [PMID: 23066432 DOI: 10.1007/s12551-012-0083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The low radiation conditions and the predominantly phase-object image formation of cryo-electron microscopy (cryo-EM) result in extremely high noise levels and low contrast in the recorded micrographs. The process of single particle or tomographic 3D reconstruction does not completely eliminate this noise and is even capable of introducing new sources of noise during alignment or when correcting for instrument parameters. The recently developed Digital Paths Supervised Variance (DPSV) denoising filter uses local variance information to control regional noise in a robust and adaptive manner. The performance of the DPSV filter was evaluated in this review qualitatively and quantitatively using simulated and experimental data from cryo-EM and tomography in two and three dimensions. We also assessed the benefit of filtering experimental reconstructions for visualization purposes and for enhancing the accuracy of feature detection. The DPSV filter eliminates high-frequency noise artifacts (density gaps), which would normally preclude the accurate segmentation of tomography reconstructions or the detection of alpha-helices in single-particle reconstructions. This collaborative software development project was carried out entirely by virtual interactions among the authors using publicly available development and file sharing tools.
Collapse
|
24
|
Ali RA, Landsberg MJ, Knauth E, Morgan GP, Marsh BJ, Hankamer B. A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms. PLoS One 2012; 7:e33697. [PMID: 22479430 PMCID: PMC3315577 DOI: 10.1371/journal.pone.0033697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤ 5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters-the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
25
|
Abstract
The electron microscope has contributed deep insights into biological structure since its invention nearly 80 years ago. Advances in instrumentation and methodology in recent decades have now enabled electron tomography to become the highest resolution three-dimensional (3D) imaging technique available for unique objects such as cells. Cells can be imaged either plastic-embedded or frozen-hydrated. Then the series of projection images are aligned and back-projected to generate a 3D reconstruction or 'tomogram'. Here, we review how electron tomography has begun to reveal the molecular organization of cells and how the existing and upcoming technologies promise even greater insights into structural cell biology.
Collapse
|
26
|
Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD, Isel C, Cavalier A, Rolland JP, Thomas D, Lina B, Marquet R. A supramolecular assembly formed by influenza A virus genomic RNA segments. Nucleic Acids Res 2011; 40:2197-209. [PMID: 22075989 PMCID: PMC3300030 DOI: 10.1093/nar/gkr985] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common ‘transition zone’ located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5′ region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.
Collapse
Affiliation(s)
- Emilie Fournier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martinez-Sanchez A, Garcia I, Fernandez JJ. A differential structure approach to membrane segmentation in electron tomography. J Struct Biol 2011; 175:372-83. [DOI: 10.1016/j.jsb.2011.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/27/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
28
|
Urbas AA, Choquette SJ. Automated spectral smoothing with spatially adaptive penalized least squares. APPLIED SPECTROSCOPY 2011; 65:665-677. [PMID: 21639989 DOI: 10.1366/10-05971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A variety of data smoothing techniques exist to address the issue of noise in spectroscopic data. The vast majority, however, require parameter specification by a knowledgeable user, which is typically accomplished by trial and error. In most situations, optimized parameters represent a compromise between noise reduction and signal preservation. In this work, we demonstrate a nonparametric regression approach to spectral smoothing using a spatially adaptive penalized least squares (SAPLS) approach. An iterative optimization procedure is employed that permits gradual flexibility in the smooth fit when statistically significant trends based on multiscale statistics assuming white Gaussian noise are detected. With an estimate of the noise level in the spectrum the procedure is fully automatic with a specified confidence level for the statistics. Potential application to the heteroscedastic noise case is also demonstrated. Performance was assessed in simulations conducted on several synthetic spectra using traditional error measures as well as comparisons of local extrema in the resulting smoothed signals to those in the true spectra. For the simulated spectra, a best case comparison with the Savitzky-Golay smoothing via an exhaustive parameter search was performed while the SAPLS method was assessed for automated application. The application to several dissimilar experimentally obtained Raman spectra is also presented.
Collapse
Affiliation(s)
- Aaron A Urbas
- Biochemical Science Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8395, USA. aaron.urbas@ nist.gov
| | | |
Collapse
|
29
|
Wei DY, Yin CC. An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data. J Struct Biol 2010; 172:211-8. [DOI: 10.1016/j.jsb.2010.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
|
30
|
Bilbao-Castro JR, Sorzano COS, Garcia I, Fernandez JJ. XMSF: Structure-preserving noise reduction and pre-segmentation in microscope tomography. Bioinformatics 2010; 26:2786-7. [DOI: 10.1093/bioinformatics/btq496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Fontana J, López-Iglesias C, Tzeng WP, Frey TK, Fernández JJ, Risco C. Three-dimensional structure of Rubella virus factories. Virology 2010; 405:579-91. [PMID: 20655079 PMCID: PMC7111912 DOI: 10.1016/j.virol.2010.06.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 12/14/2022]
Abstract
Viral factories are complex structures in the infected cell where viruses compartmentalize their life cycle. Rubella virus (RUBV) assembles factories by recruitment of rough endoplasmic reticulum (RER), mitochondria and Golgi around modified lysosomes known as cytopathic vacuoles or CPVs. These organelles contain active replication complexes that transfer replicated RNA to assembly sites in Golgi membranes. We have studied the structure of RUBV factory in three dimensions by electron tomography and freeze-fracture. CPVs contain stacked membranes, rigid sheets, small vesicles and large vacuoles. These membranes are interconnected and in communication with the endocytic pathway since they incorporate endocytosed BSA-gold. RER and CPVs are coupled through protein bridges and closely apposed membranes. Golgi vesicles attach to the CPVs but no tight contacts with mitochondria were detected. Immunogold labelling confirmed that the mitochondrial protein p32 is an abundant component around and inside CPVs where it could play important roles in factory activities.
Collapse
Affiliation(s)
- Juan Fontana
- Cell Structure Lab, Centro Nacional de Biotecnología, CSIC, Darwin, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
We have analysed the formation of streak artefacts in the reconstruction based on the filtered back projection algorithm in electron tomography (ET) and accordingly applied an adaptive interpolation technique to artefact reduction. In the adaptive interpolation to recover the missing information, the edge positions in a projection curve were tracked to reduce the interpolation error. A simulation was used to demonstrate the effectiveness of the artefact reduction. Furthermore, image reconstruction of integrated circuit specimens in the ET experiments with the ultra-high voltage electron microscope show that the strong streak artefacts can be reduced effectively by our artefact reduction technique.
Collapse
Affiliation(s)
- M Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Voss NR, Potter CS, Smith R, Carragher B. Software Tools for Molecular Microscopy. Methods Enzymol 2010; 482:381-92. [DOI: 10.1016/s0076-6879(10)82016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
34
|
Volkmann N. Methods for segmentation and interpretation of electron tomographic reconstructions. Methods Enzymol 2010; 483:31-46. [PMID: 20888468 DOI: 10.1016/s0076-6879(10)83002-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electron tomography has become a powerful tool for revealing the molecular architecture of biological cells and tissues. In principle, electron tomography can provide high-resolution mapping of entire proteomes. The achievable resolution (3-8 nm) is capable of bridging the gap between live-cell imaging and atomic resolution structures. However, the relevant information is not readily accessible from the data and needs to be identified, extracted, and processed before it can be used. Because electron tomography imaging and image acquisition technologies have enjoyed major advances in the last few years and continue to increase data throughput, the need for approaches that allow automatic and objective interpretation of electron tomograms becomes more and more urgent. This chapter provides an overview of the state of the art in this field and attempts to identify the major bottlenecks that prevent approaches for interpreting electron tomography data to develop their full potential.
Collapse
Affiliation(s)
- Niels Volkmann
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
35
|
Volkmann N. Confidence intervals for fitting of atomic models into low-resolution densities. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:679-89. [PMID: 19564688 PMCID: PMC2703574 DOI: 10.1107/s0907444909012876] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 04/06/2009] [Indexed: 03/18/2023]
Abstract
The fitting of high-resolution structures into low-resolution densities obtained from techniques such as electron microscopy or small-angle X-ray scattering can yield powerful new insights. While several algorithms for achieving optimal fits have recently been developed, relatively little effort has been devoted to developing objective measures for judging the quality of the resulting fits, in particular with regard to the danger of overfitting. Here, a general method is presented for obtaining confidence intervals for atomic coordinates resulting from fitting of atomic resolution domain structures into low-resolution densities using well established statistical tools. It is demonstrated that the resulting confidence intervals are sufficiently accurate to allow meaningful statistical tests and to provide tools for detecting potential overfitting.
Collapse
Affiliation(s)
- Niels Volkmann
- Burnham Institute for Medical Research, La Jolla, California, USA.
| |
Collapse
|
36
|
Fernandez JJ. TOMOBFLOW: feature-preserving noise filtering for electron tomography. BMC Bioinformatics 2009; 10:178. [PMID: 19523199 PMCID: PMC2753846 DOI: 10.1186/1471-2105-10-178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/12/2009] [Indexed: 11/28/2022] Open
Abstract
Background Noise filtering techniques are needed in electron tomography to allow proper interpretation of datasets. The standard linear filtering techniques are characterized by a tradeoff between the amount of reduced noise and the blurring of the features of interest. On the other hand, sophisticated anisotropic nonlinear filtering techniques allow noise reduction with good preservation of structures. However, these techniques are computationally intensive and are difficult to be tuned to the problem at hand. Results TOMOBFLOW is a program for noise filtering with capabilities of preservation of biologically relevant information. It is an efficient implementation of the Beltrami flow, a nonlinear filtering method that locally tunes the strength of the smoothing according to an edge indicator based on geometry properties. The fact that this method does not have free parameters hard to be tuned makes TOMOBFLOW a user-friendly filtering program equipped with the power of diffusion-based filtering methods. Furthermore, TOMOBFLOW is provided with abilities to deal with different types and formats of images in order to make it useful for electron tomography in particular and bioimaging in general. Conclusion TOMOBFLOW allows efficient noise filtering of bioimaging datasets with preservation of the features of interest, thereby yielding data better suited for post-processing, visualization and interpretation. It is available at the web site .
Collapse
Affiliation(s)
- Jose-Jesus Fernandez
- Dept Computer Architecture and Electronics, University of Almería, Almería, Spain.
| |
Collapse
|
37
|
|
38
|
Fontana J, López-Montero N, Elliott RM, Fernández JJ, Risco C. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol 2008; 10:2012-28. [PMID: 18547336 PMCID: PMC7162186 DOI: 10.1111/j.1462-5822.2008.01184.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 05/29/2008] [Indexed: 12/22/2022]
Abstract
Viral factories are novel structures built by viruses in infected cells. During their construction organelles are recruited and build a large scaffold for viral replication and morphogenesis. We have studied how a bunyavirus uses the Golgi to build the factory. With the help of confocal and 3D ultrastructural imaging together with molecular mapping in situ and in vitro we have characterized a tubular structure that harbours the viral replication complexes in a globular domain. Numerous ribonucleoproteins were released from purified tubes disrupted in vitro. Actin and myosin I were identified by peptide mass fingerprinting in isolated tubes while actin and the viral NSm non-structural protein were detected in the tubes' internal proteinaceous scaffold by immunogold labelling. Studies with NSm deletion mutants and drugs affecting actin showed that both NSm and actin are key factors for tube and virus assembly in Golgi. Three-dimensional reconstructions based on oriented serial sections of infected cells showed that tubes anchor cell organelles to Golgi stacks and make contacts with intracellular viruses. We propose that this new structure, unique among enveloped viruses, assembles in association with the most stable component of Golgi stacks, the actin-containing matrix scaffold, connecting viral replication and morphogenesis inside viral factories.
Collapse
Affiliation(s)
- Juan Fontana
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Performance evaluation of image processing algorithms on the GPU. J Struct Biol 2008; 164:153-60. [DOI: 10.1016/j.jsb.2008.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/01/2008] [Accepted: 07/16/2008] [Indexed: 11/19/2022]
|
40
|
Schulze HG, Foist RB, Ivanov A, Turner RFB. Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky-Golay filter. APPLIED SPECTROSCOPY 2008; 62:1160-1166. [PMID: 18926027 DOI: 10.1366/000370208786049079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The automated processing of data from high-throughput and real-time collection procedures is becoming a pressing problem. Currently the focus is shifting to automated smoothing techniques where, unlike background subtraction techniques, very few methods exist. We have developed a filter based on the widely used and conceptually simple moving average method or zero-order Savitzky-Golay filter and its iterative relative, the Kolmogorov-Zurbenko filter. A crucial difference, however, between these filters and our implementation is that our fully automated smoothing filter requires no parameter specification or parameter optimization. Results are comparable to, or better than, Savitzky-Golay filters with optimized parameters and superior to the automated iterative median filter. Our approach, because it is based on the highly familiar moving average concept, is intuitive, fast, and straightforward to implement and should therefore be of immediate and considerable practical use in a wide variety of spectroscopy applications.
Collapse
Affiliation(s)
- H Georg Schulze
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | |
Collapse
|
41
|
Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. The structural basis of actin filament branching by the Arp2/3 complex. ACTA ACUST UNITED AC 2008; 180:887-95. [PMID: 18316411 PMCID: PMC2265399 DOI: 10.1083/jcb.200709092] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.
Collapse
|
42
|
McEwen BF, Renken C, Marko M, Mannella C. Chapter 6 Principles and Practice in Electron Tomography. Methods Cell Biol 2008; 89:129-68. [DOI: 10.1016/s0091-679x(08)00606-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
43
|
Heymann JB, Cardone G, Winkler DC, Steven AC. Computational resources for cryo-electron tomography in Bsoft. J Struct Biol 2007; 161:232-42. [PMID: 17869539 PMCID: PMC2409064 DOI: 10.1016/j.jsb.2007.08.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 11/21/2022]
Abstract
The Bsoft package [Heymann, J.B., Belnap, D.M., 2007. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3-18] has been enhanced by adding utilities for processing electron tomographic (ET) data; in particular, cryo-ET data characterized by low contrast and high noise. To handle the high computational load efficiently, a workflow was developed, based on the database-like parameter handling in Bsoft, aimed at minimizing user interaction and facilitating automation. To the same end, scripting elements distribute the processing among multiple processors on the same or different computers. The resolution of a tomogram depends on the precision of projection alignment, which is usually based on pinpointing fiducial markers (electron-dense gold particles). Alignment requires accurate specification of the tilt axis, and our protocol includes a procedure for determining it to adequate accuracy. Refinement of projection alignment provides information that allows assessment of its precision, as well as projection quality control. We implemented a reciprocal space algorithm that affords an alternative to back-projection or real space algorithms for calculating tomograms. Resources are also included that allow resolution assessment by cross-validation (NLOO2D); denoising and interpretation; and the extraction, mutual alignment, and averaging of tomographic sub-volumes.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1515, 50 South Drive MSC 8025, Bethesda, MD 20892-8025, USA.
| | | | | | | |
Collapse
|
44
|
Pantelic RS, Ericksson G, Hamilton N, Hankamer B. Bilateral edge filter: photometrically weighted, discontinuity based edge detection. J Struct Biol 2007; 160:93-102. [PMID: 17822922 DOI: 10.1016/j.jsb.2007.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 07/12/2007] [Accepted: 07/17/2007] [Indexed: 11/28/2022]
Abstract
Edge-detection algorithms have the potential to play an increasingly important role both in single particle analysis (for the detection of randomly oriented particles), and in tomography (for the segmentation of 3D volumes). However, the majority of traditional linear filters are significantly affected by noise as well as artefacts, and offer limited selectivity. The Bilateral edge filter presented here is an adaptation of the Bilateral filter [Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chiu, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struct. Biol. 144, 114-122] designed for enhanced edge detection. It uses photometric weighting to identify significant discontinuities (representing edges), minimizing artefacts and noise. Compared with common edge-detectors (LoG, Marr-Hildreth) the Bilateral edge filter yielded significantly better results. Indeed data was of a similar quality to that of the Canny edge-detector, which is considered as a leading standard in edge detection [Basu, M., 2002. Gaussian-based edge-detection methods-a survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 32, 252-260]. Compared to the Canny edge-detector the Bilateral edge-detector has the advantages that it only requires the adjustment of a single parameter, is theoretically faster for reasonably sized images, and can be used in selective contrast enhancement of images. The simplicity and speed of the filter for single particle and tomographic analysis are discussed.
Collapse
Affiliation(s)
- Radosav S Pantelic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|