1
|
Tzror Y, Bezner M, Deri S, Trigano T, Ben-Harush K. Nanofilament organization in highly tough fibers based on lamin proteins. J Mech Behav Biomed Mater 2024; 160:106748. [PMID: 39332142 DOI: 10.1016/j.jmbbm.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.
Collapse
Affiliation(s)
- Yael Tzror
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Mark Bezner
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Shani Deri
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Tom Trigano
- Department of Electrical Engineering, SCE - Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Kfir Ben-Harush
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel.
| |
Collapse
|
2
|
Buxboim A, Kronenberg-Tenga R, Salajkova S, Avidan N, Shahak H, Thurston A, Medalia O. Scaffold, mechanics and functions of nuclear lamins. FEBS Lett 2023; 597:2791-2805. [PMID: 37813648 DOI: 10.1002/1873-3468.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Nuclear lamins are type-V intermediate filaments that are involved in many nuclear processes. In mammals, A- and B-type lamins assemble into separate physical meshwork underneath the inner nuclear membrane, the nuclear lamina, with some residual fraction localized within the nucleoplasm. Lamins are the major part of the nucleoskeleton, providing mechanical strength and flexibility to protect the genome and allow nuclear deformability, while also contributing to gene regulation via interactions with chromatin. While lamins are the evolutionary ancestors of all intermediate filament family proteins, their ultimate filamentous assembly is markedly different from their cytoplasmic counterparts. Interestingly, hundreds of genetic mutations in the lamina proteins have been causally linked with a broad range of human pathologies, termed laminopathies. These include muscular, neurological and metabolic disorders, as well as premature aging diseases. Recent technological advances have contributed to resolving the filamentous structure of lamins and the corresponding lamina organization. In this review, we revisit the multiscale lamin organization and discuss its implications on nuclear mechanics and chromatin organization within lamina-associated domains.
Collapse
Affiliation(s)
- Amnon Buxboim
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Sarka Salajkova
- Department of Biochemistry, University of Zurich, Switzerland
| | - Nili Avidan
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Hen Shahak
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Alice Thurston
- Department of Biochemistry, University of Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
3
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
4
|
Abstract
Lamins are evolutionarily conserved nuclear intermediate filament proteins. They provide structural support for the nucleus and help regulate many other nuclear activities. Mutations in human lamin genes, and especially in the LMNA gene, cause numerous diseases, termed laminopathies, including muscle, cardiac, metabolic, neuronal and early aging diseases. Most laminopathies arise from autosomal dominant missense mutations. Many of the mutant residues are conserved in the lamin genes of the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Our current understanding of the mechanisms leading to these diseases is mostly based on patients cell lines and animal models including C. elegans and D. melanogaster. The simpler lamin system and the powerful genetic tools offered by these invertebrate organisms greatly contributed to such studies. Here we provide an overview of the studies of laminopathies in Drosophila and C. elegans models.
Collapse
Affiliation(s)
- Ryszard Rzepecki
- a Laboratory of Nuclear Proteins, Faculty of Biotechnology , University of Wroclaw , Fryderyka Joliot-Curie, Wroclaw , Poland
| | - Yosef Gruenbaum
- a Laboratory of Nuclear Proteins, Faculty of Biotechnology , University of Wroclaw , Fryderyka Joliot-Curie, Wroclaw , Poland.,b Department of Genetics , Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
5
|
Steele-Stallard HB, Pinton L, Sarcar S, Ozdemir T, Maffioletti SM, Zammit PS, Tedesco FS. Modeling Skeletal Muscle Laminopathies Using Human Induced Pluripotent Stem Cells Carrying Pathogenic LMNA Mutations. Front Physiol 2018; 9:1332. [PMID: 30405424 PMCID: PMC6201196 DOI: 10.3389/fphys.2018.01332] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in LMNA. The main proteins encoded by LMNA are Lamin A and C, which together with Lamin B1 and B2, form the nuclear lamina: a mesh-like structure located underneath the inner nuclear membrane. Laminopathies show striking tissue specificity, with subtypes affecting striated muscle, peripheral nerve, and adipose tissue, while others cause multisystem disease with accelerated aging. Although several pathogenic mechanisms have been proposed, the exact pathophysiology of laminopathies remains unclear, compounded by the rarity of these disorders and lack of easily accessible cell types to study. To overcome this limitation, we used induced pluripotent stem cells (iPSCs) from patients with skeletal muscle laminopathies such as LMNA-related congenital muscular dystrophy and limb-girdle muscular dystrophy 1B, to model disease phenotypes in vitro. iPSCs can be derived from readily accessible cell types, have unlimited proliferation potential and can be differentiated into cell types that would otherwise be difficult and invasive to obtain. iPSC lines from three skeletal muscle laminopathy patients were differentiated into inducible myogenic cells and myotubes. Disease-associated phenotypes were observed in these cells, including abnormal nuclear shape and mislocalization of nuclear lamina proteins. Nuclear abnormalities were less pronounced in monolayer cultures of terminally differentiated skeletal myotubes than in proliferating myogenic cells. Notably, skeletal myogenic differentiation of LMNA-mutant iPSCs in artificial muscle constructs improved detection of myonuclear abnormalities compared to conventional monolayer cultures across multiple pathogenic genotypes, providing a high-fidelity modeling platform for skeletal muscle laminopathies. Our results lay the foundation for future iPSC-based therapy development and screening platforms for skeletal muscle laminopathies.
Collapse
Affiliation(s)
- Heather B Steele-Stallard
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
6
|
Rudich P, Snoznik C, Watkins SC, Monaghan J, Pandey UB, Lamitina ST. Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum Mol Genet 2018; 26:4916-4928. [PMID: 29036691 PMCID: PMC5886095 DOI: 10.1093/hmg/ddx372] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/07/2023] Open
Abstract
A hexanucleotide repeat expansion mutation in the C9orf72 gene represents a prevalent genetic cause of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Non-canonical translation of this repeat gives rise to several distinct dipeptide protein species that could play pathological roles in disease. Here, we show in the model system Caenorhabditis elegans that expression of the arginine-containing dipeptides, but not alanine-containing dipeptides, produces toxic phenotypes in multiple cellular contexts, including motor neurons. Expression of either (PR)50 or (GR)50 during development caused a highly penetrant developmental arrest, while post-developmental expression caused age-onset paralysis. Both (PR)50- and (GR)50-green fluorescent protein tagged dipeptides were present in the nucleus and nuclear localization was necessary and sufficient for their toxicity. Using an inducible expression system, we discovered that age-onset phenotypes caused by (PR)50 required both continual (PR)50 expression and an aged cellular environment. The toxicity of (PR)50 was modified by genetic mutations that uncouple physiological aging from chronological aging. However, these same mutations failed to modify the toxicity of (GR)50, suggesting that (PR)50 and (GR)50 exert their toxicity through partially distinct mechanism(s). Changing the rate of physiological aging also mitigates toxicity in other C. elegans models of ALS, suggesting that the (PR)50 dipeptide might engage similar toxicity mechanisms as other ALS disease-causing proteins.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Carley Snoznik
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John Monaghan
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - S Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Insight into the functional organization of nuclear lamins in health and disease. Curr Opin Cell Biol 2018; 54:72-79. [PMID: 29800922 DOI: 10.1016/j.ceb.2018.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
Lamins are the main component of the nuclear lamina, a protein meshwork at the inner nuclear membrane which primarily provide mechanical stability to the nucleus. Lamins, type V intermediate filament proteins, are also involved in many nuclear activities. Structural analysis of nuclei revealed that lamins form 3.5nm thick filaments often interact with nuclear pore complexes. Mutations in the LMNA gene, encoding A-type lamins, have been associated with at least 15 distinct diseases collectively termed laminopathies, including muscle, metabolic and neurological disorders, and premature aging syndrome. It is unclear how laminopathic mutations lead to such a wide array of diseases, essentially affecting almost all tissues.
Collapse
|
8
|
Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29:852-868. [PMID: 29386297 PMCID: PMC5905298 DOI: 10.1091/mbc.e17-06-0374] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transient nuclear envelope (NE) ruptures in the Caenorhabditis elegans zygote are caused by a weakened nuclear lamina during nuclear positioning. Dynein-pulling forces enhance the severity of ruptures, while lamin restricts nucleocytoplasmic mixing and allows stable NE repair. This work is the first mechanistic analysis of NE rupture and repair in an organism. Recent work done exclusively in tissue culture cells revealed that the nuclear envelope (NE) ruptures and repairs in interphase. The duration of NE ruptures depends on lamins; however, the underlying mechanisms and relevance to in vivo events are not known. Here, we use the Caenorhabditis elegans zygote to analyze lamin’s role in NE rupture and repair in vivo. Transient NE ruptures and subsequent NE collapse are induced by weaknesses in the nuclear lamina caused by expression of an engineered hypomorphic C. elegans lamin allele. Dynein-generated forces that position nuclei enhance the severity of transient NE ruptures and cause NE collapse. Reduction of dynein forces allows the weakened lamin network to restrict nucleo–cytoplasmic mixing and support stable NE recovery. Surprisingly, the high incidence of transient NE ruptures does not contribute to embryonic lethality, which is instead correlated with stochastic chromosome scattering resulting from premature NE collapse, suggesting that C. elegans tolerates transient losses of NE compartmentalization during early embryogenesis. In sum, we demonstrate that lamin counteracts dynein forces to promote stable NE repair and prevent catastrophic NE collapse, and thus provide the first mechanistic analysis of NE rupture and repair in an organismal context.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Brian Wysolmerski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Michael Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Reza Farhadifar
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Michael A Martinez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Ronald Biggs
- Department of Cellular & Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | - Hai-Yin Wu
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Curtis Broberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Daniel Needleman
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
de Leeuw R, Gruenbaum Y, Medalia O. Nuclear Lamins: Thin Filaments with Major Functions. Trends Cell Biol 2017; 28:34-45. [PMID: 28893461 DOI: 10.1016/j.tcb.2017.08.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
The nuclear lamina is a nuclear peripheral meshwork that is mainly composed of nuclear lamins, although a small fraction of lamins also localizes throughout the nucleoplasm. Lamins are classified as type V intermediate filament (IF) proteins. Mutations in lamin genes cause at least 15 distinct human diseases, collectively termed laminopathies, including muscle, metabolic, and neuronal diseases, and can cause accelerated aging. Most of these mutations are in the LMNA gene encoding A-type lamins. A growing number of nuclear proteins are known to bind lamins and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, signaling, gene regulation, genome stability, and cell differentiation. Recent studies reveal the organization of the lamin filament meshwork in somatic cells where they assemble as tetramers in cross-section of the filaments.
Collapse
Affiliation(s)
- Rebecca de Leeuw
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yosef Gruenbaum
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
10
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
11
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
12
|
Zuela N, Dorfman J, Gruenbaum Y. Global transcriptional changes caused by an EDMD mutation correlate to tissue specific disease phenotypes in C. elegans. Nucleus 2016; 8:60-69. [PMID: 27673727 DOI: 10.1080/19491034.2016.1238999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are numerous heritable diseases associated with mutations in the LMNA gene. Most of these laminopathic diseases, including several muscular dystrophies, are autosomal dominant and have tissue-specific phenotypes. Our previous studies have shown that the globally expressed Emery-Dreifuss muscular dystrophy (EDMD)-linked lamin mutation, L535P, disrupts nuclear mechanical response specifically in muscle nuclei of C. elegans leading to atrophy of the body muscle cells and to reduced motility. Here we used RNA sequencing to analyze the global changes in gene expression caused by the L535P EDMD lamin mutation in order to gain better understanding of disease mechanisms and the correlation between transcription and phenotype. Our results show changes in key genes and biological pathways that can help explain the muscle specific phenotypes. In addition, the differential gene expression between wild-type and L535P mutant animals suggests that the pharynx function in the L535P mutant animals is affected by this lamin mutation. Moreover, these transcriptional changes were then correlated with reduced pharynx activity and abnormal pharynx muscle structure. Understanding disease mechanisms will potentially lead to new therapeutic approaches toward curing EDMD.
Collapse
Affiliation(s)
- Noam Zuela
- a Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| | | | - Yosef Gruenbaum
- a Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
13
|
Zuela N, Zwerger M, Levin T, Medalia O, Gruenbaum Y. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation. J Cell Sci 2016; 129:1781-91. [PMID: 27034135 DOI: 10.1242/jcs.184309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Monika Zwerger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Tal Levin
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
15
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
16
|
Abstract
Current anti-cancer therapies have a great deal of undesirable side effects; therefore, there is a need to develop efficient and cancer cell-specific new drugs without strong dose-limiting side effects. In my opinion, mechanisms of nuclear assembly and organization represent a novel platform for drug targets, which might fulfill these criteria. The nuclear stiffness and organization of some cancer types are often compromised, making them more vulnerable for further targeting the mechanisms of nuclear integrity than their normal counterparts. Here I will discuss the nuclear organization of normal cells and cancer cells, the molecular mechanisms that govern nuclear assembly with emphasis on those that, in my view, might be considered as targets for future anti-cancer therapies.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- Bayer Pharma AG; Bayer Healthcare Pharmaceuticals; Global Drug Discovery; Therapeutic Research Group Oncology; Berlin, Germany
| |
Collapse
|
17
|
Lyakhovetsky R, Gruenbaum Y. Studying lamins in invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:245-62. [PMID: 24563351 DOI: 10.1007/978-1-4899-8032-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are nuclear intermediate filament proteins that are conserved in all multicellular animals. Proteins that resemble lamins are also found in unicellular organisms and in plants. Lamins form a proteinaceous meshwork that outlines the nucleoplasmic side of the inner nuclear membrane, while a small fraction of lamin molecules is also present in the nucleoplasm. They provide structural support for the nucleus and help regulate many other nuclear activities. Much of our knowledge on the function of nuclear lamins and their associated proteins comes from studies in invertebrate organisms and specifically in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The simpler lamin system and the powerful genetic tools offered by these model organisms greatly promote such studies. Here we provide an overview of recent advances in the biology of invertebrate nuclear lamins, with special emphasis on their assembly, cellular functions and as models for studying the molecular basis underlying the pathology of human heritable diseases caused by mutations in lamins A/C.
Collapse
Affiliation(s)
- Roman Lyakhovetsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | | |
Collapse
|
18
|
Davidson PM, Lammerding J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2013; 24:247-56. [PMID: 24309562 DOI: 10.1016/j.tcb.2013.11.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022]
Abstract
Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering/Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sharma R, Meister P. Nuclear organization in the nematode C. elegans. Curr Opin Cell Biol 2013; 25:395-402. [PMID: 23481208 DOI: 10.1016/j.ceb.2013.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.
Collapse
Affiliation(s)
- Rahul Sharma
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
21
|
Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, Herrmann H, Wallrath LL, Lammerding J. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 2013; 22:2335-49. [PMID: 23427149 DOI: 10.1093/hmg/ddt079] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lamins are intermediate filament proteins that assemble into a meshwork underneath the inner nuclear membrane, the nuclear lamina. Mutations in the LMNA gene, encoding lamins A and C, cause a variety of diseases collectively called laminopathies. The disease mechanism for these diverse conditions is not well understood. Since lamins A and C are fundamental determinants of nuclear structure and stability, we tested whether defects in nuclear mechanics could contribute to the disease development, especially in laminopathies affecting mechanically stressed tissue such as muscle. Using skin fibroblasts from laminopathy patients and lamin A/C-deficient mouse embryonic fibroblasts stably expressing a broad panel of laminopathic lamin A mutations, we found that several mutations associated with muscular dystrophy and dilated cardiomyopathy resulted in more deformable nuclei; in contrast, lamin mutants responsible for diseases without muscular phenotypes did not alter nuclear deformability. We confirmed our results in intact muscle tissue, demonstrating that nuclei of transgenic Drosophila melanogaster muscle expressing myopathic lamin mutations deformed more under applied strain than controls. In vivo and in vitro studies indicated that the loss of nuclear stiffness resulted from impaired assembly of mutant lamins into the nuclear lamina. Although only a subset of lamin mutations associated with muscular diseases caused increased nuclear deformability, almost all mutations tested had defects in force transmission between the nucleus and cytoskeleton. In conclusion, our results indicate that although defective nuclear stability may play a role in the development of muscle diseases, other factors, such as impaired nucleo-cytoskeletal coupling, likely contribute to the muscle phenotype.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zuela N, Bar DZ, Gruenbaum Y. Lamins in development, tissue maintenance and stress. EMBO Rep 2012; 13:1070-8. [PMID: 23146893 PMCID: PMC3512410 DOI: 10.1038/embor.2012.167] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022] Open
Abstract
Lamins are nuclear intermediate filament proteins. They provide mechanical stability, organize chromatin and regulate transcription, replication, nuclear assembly and nuclear positioning. Recent studies provide new insights into the role of lamins in development, differentiation and tissue response to mechanical, reactive oxygen species and thermal stresses. These studies also propose the existence of separate filament networks for A- and B-type lamins and identify new roles for the different networks. Furthermore, they show changes in lamin composition in different cell types, propose explanations for the more than 14 distinct human diseases caused by lamin A and lamin C mutations and propose a role for lamin B1 in these diseases.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|