1
|
Lorenz C, Forsting J, Style RW, Klumpp S, Köster S. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. MATTER 2023; 6:2019-2033. [PMID: 37332398 PMCID: PMC10273143 DOI: 10.1016/j.matt.2023.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
Cell mechanics are determined by an intracellular biopolymer network, including intermediate filaments that are expressed in a cell-type-specific manner. A prominent pair of intermediate filaments are keratin and vimentin, as they are expressed by non-motile and motile cells, respectively. Therefore, the differential expression of these proteins coincides with a change in cellular mechanics and dynamic properties of the cells. This observation raises the question of how the mechanical properties already differ on the single filament level. Here, we use optical tweezers and a computational model to compare the stretching and dissipation behavior of the two filament types. We find that keratin and vimentin filaments behave in opposite ways: keratin filaments elongate but retain their stiffness, whereas vimentin filaments soften but retain their length. This finding is explained by fundamentally different ways to dissipate energy: viscous sliding of subunits within keratin filaments and non-equilibrium α helix unfolding in vimentin filaments.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Schween L, Mücke N, Portet S, Goldmann WH, Herrmann H, Fabry B. Dual-wavelength stopped-flow analysis of the lateral and longitudinal assembly kinetics of vimentin. Biophys J 2022; 121:3850-3861. [PMID: 36101505 PMCID: PMC9674981 DOI: 10.1016/j.bpj.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Vimentin is a highly charged intermediate filament protein that inherently forms extended dimeric coiled coils, which serve as the basic building blocks of intermediate filaments. Under low ionic strength conditions, vimentin filaments dissociate into uniform tetrameric complexes of two anti-parallel-oriented, half-staggered coiled-coil dimers. By addition of salt, vimentin tetramers spontaneously reassemble into filaments in a time-dependent process: 1) lateral assembly of tetramers into unit-length filaments, 2) longitudinal annealing of unit-length filaments, and 3) longitudinal assembly of filaments coupled with subsequent radial compaction. To independently determine the lateral and longitudinal assembly kinetics, we measure with a stopped-flow instrument the static light scattering signal at two different wavelengths (405 and 594 nm) with a temporal resolution of 3 ms and analyze the signals based on Rayleigh-Gans theory. This theory considers that the intensity of the scattered light depends not only on the molecular weight of the scattering object but also on its shape. This shape dependence is more pronounced at shorter wavelengths, allowing us to decompose the scattered light signal into its components arising from lateral and longitudinal filament assembly. We demonstrate that both the lateral and longitudinal filament assembly kinetics increase with salt concentration.
Collapse
Affiliation(s)
- Lovis Schween
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität of Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Mücke
- Division of Chromatin Networks, German Cancer Research Center, Heidelberg, Germany
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität of Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität of Erlangen-Nürnberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Lorenz C, Köster S. Multiscale architecture: Mechanics of composite cytoskeletal networks. BIOPHYSICS REVIEWS 2022; 3:031304. [PMID: 38505277 PMCID: PMC10903411 DOI: 10.1063/5.0099405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 03/21/2024]
Abstract
Different types of biological cells respond differently to mechanical stresses, and these responses are mainly governed by the cytoskeleton. The main components of this biopolymer network are actin filaments, microtubules, and intermediate filaments, whose mechanical and dynamic properties are highly distinct, thus opening up a large mechanical parameter space. Aside from experiments on whole, living cells, "bottom-up" approaches, utilizing purified, reconstituted protein systems, tremendously help to shed light on the complex mechanics of cytoskeletal networks. Such experiments are relevant in at least three aspects: (i) from a fundamental point of view, cytoskeletal networks provide a perfect model system for polymer physics; (ii) in materials science and "synthetic cell" approaches, one goal is to fully understand properties of cellular materials and reconstitute them in synthetic systems; (iii) many diseases are associated with cell mechanics, so a thorough understanding of the underlying phenomena may help solving pressing biomedical questions. In this review, we discuss the work on networks consisting of one, two, or all three types of filaments, entangled or cross-linked, and consider active elements such as molecular motors and dynamically growing filaments. Interestingly, tuning the interactions among the different filament types results in emergent network properties. We discuss current experimental challenges, such as the comparability of different studies, and recent methodological advances concerning the quantification of attractive forces between filaments and their influence on network mechanics.
Collapse
Affiliation(s)
- C. Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S. Köster
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Mücke N, Wocjan T, Jacquier M, Herrmann H, Portet S. A general mathematical model for the in vitro assembly dynamics of intermediate filament proteins. Biophys J 2022; 121:1094-1104. [PMID: 35124070 PMCID: PMC8943748 DOI: 10.1016/j.bpj.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Intermediate filament (IF) proteins assemble into highly flexible filaments that organize into complex cytoplasmic networks: keratins in all types of epithelia, vimentin in endothelia, and desmin in muscle. Since IF elongation proceeds via end-to-end annealing of unit-length filaments and successively of progressively growing filaments, it is important to know how their remarkable flexibility, i.e., their persistence length lp, influences the assembly kinetics. In fact, their lp ranges between 0.3 μm (keratin K8/K18) and 1.0 μm (vimentin and desmin), and thus is orders of magnitude lower than that of microtubules and F-actin. Here, we present a unique mathematical model, which implements the semiflexible nature of the three IF types based on published semiflexible polymers theories and depends on a single free parameter k0. Calibrating this model to filament mean length dynamics of the three proteins, we demonstrate that the persistence length is indeed essential to accurately describe their assembly kinetics. Furthermore, we reveal that the difference in flexibility alone does not explain the significantly faster assembly rate of keratin filaments compared with that of vimentin. Likewise, desmin assembles approximately six times faster than vimentin, even though both their filaments exhibit the same lp value. These data strongly indicate that differences in their individual amino acid sequences significantly impact the assembly rates. Nevertheless, using a single k0 value for each of these three key representatives of the IF protein family, our advanced model does accurately describe the length distribution and mean length dynamics and provides effective filament assembly rates. It thus provides a tool for future investigations on the impact of posttranslational modifications or amino acid changes of IF proteins on assembly kinetics. This is an important issue, as the discovery of mutations in IF genes causing severe human disease, particularly for desmin and keratins, is steadily increasing.
Collapse
Affiliation(s)
- Norbert Mücke
- Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany; Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tomasz Wocjan
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
6
|
Weber MS, Eibauer M, Sivagurunathan S, Magin TM, Goldman RD, Medalia O. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. eLife 2021; 10:70307. [PMID: 34323216 PMCID: PMC8360650 DOI: 10.7554/elife.70307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Keratin intermediate filaments are an essential and major component of the cytoskeleton in epithelial cells. They form a stable yet dynamic filamentous network extending from the nucleus to the cell periphery, which provides resistance to mechanical stresses. Mutations in keratin genes are related to a variety of epithelial tissue diseases. Despite their importance, the molecular structure of keratin filaments remains largely unknown. In this study, we analyzed the structure of keratin 5/keratin 14 filaments within ghost mouse keratinocytes by cryo-electron microscopy and cryo-electron tomography. By averaging a large number of keratin segments, we have gained insights into the helical architecture of the filaments. Two-dimensional classification revealed profound variations in the diameter of keratin filaments and their subunit organization. Computational reconstitution of filaments of substantial length uncovered a high degree of internal heterogeneity along single filaments, which can contain regions of helical symmetry, regions with less symmetry and regions with significant diameter fluctuations. Cross-section views of filaments revealed that keratins form hollow cylinders consisting of multiple protofilaments, with an electron dense core located in the center of the filament. These findings shed light on the complex and remarkable heterogenic architecture of keratin filaments, suggesting that they are highly flexible, dynamic cytoskeletal structures.
Collapse
Affiliation(s)
- Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
8
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
9
|
Lorenz C, Forsting J, Schepers AV, Kraxner J, Bauch S, Witt H, Klumpp S, Köster S. Lateral Subunit Coupling Determines Intermediate Filament Mechanics. PHYSICAL REVIEW LETTERS 2019; 123:188102. [PMID: 31763918 DOI: 10.1103/physrevlett.123.188102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 05/27/2023]
Abstract
The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Susanne Bauch
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hannes Witt
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammanstraße 2, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 7, 37077 Göttingen
| | - Stefan Klumpp
- Institute for Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Golde T, Glaser M, Tutmarc C, Elbalasy I, Huster C, Busteros G, Smith DM, Herrmann H, Käs JA, Schnauß J. The role of stickiness in the rheology of semiflexible polymers. SOFT MATTER 2019; 15:4865-4872. [PMID: 31161188 DOI: 10.1039/c9sm00433e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brennich ME, Vainio U, Wedig T, Bauch S, Herrmann H, Köster S. Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. SOFT MATTER 2019; 15:1999-2008. [PMID: 30719518 DOI: 10.1039/c8sm02281j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vimentin intermediate filaments constitute a distinct filament system in mesenchymal cells that is instrumental for cellular mechanics and migration. In vitro, the rod-like monomers assemble in a multi-step, salt-dependent manner into micrometer long biopolymers. To disclose the underlying mechanisms further, we employed small angle X-ray scattering on two recombinant vimentin variants, whose assembly departs at strategic points from the normal assembly route: (i) vimentin with a tyrosine to leucine change at position 117; (ii) vimentin missing the non-α-helical carboxyl-terminal domain. Y117L vimentin assembles into unit-length filaments (ULFs) only, whereas ΔT vimentin assembles into filaments containing a higher number of tetramers per cross section than normal vimentin filaments. We show that the shape and inner structure of these mutant filaments is significantly altered. ULFs assembled from Y117L vimentin contain more, less tightly bundled vimentin tetramers, and ΔT vimentin filaments preserve the number density despite the higher number of tetramers per filament cross-section.
Collapse
Affiliation(s)
- Martha E Brennich
- Institute for X-ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
G Lopez C, Saldanha O, Aufderhorst-Roberts A, Martinez-Torres C, Kuijs M, Koenderink GH, Köster S, Huber K. Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. SOFT MATTER 2018; 14:8445-8454. [PMID: 30191240 DOI: 10.1039/c8sm01007b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments are a major structural element in the cytoskeleton of animal cells that mechanically integrate other cytoskeletal components and absorb externally applied stress. Their role is likely to be linked to their complex molecular architecture which is the product of a multi-step assembly pathway. Intermediate filaments form tetrameric subunits which assemble in the presence of monovalent salts to form unit length filaments that subsequently elongate by end-to-end annealing. The present work characterizes this complex assembly process using reconstituted vimentin intermediate filaments with monovalent salts as an assembly trigger. A multi-scale approach is used, comprising static light scattering, dynamic light scattering and quantitative scanning transmission electron microscopy (STEM) mass measurements. Light scattering reveals the radius of gyration (Rg), molecular weight (Mw) and diffusion coefficient (D) of the assembling filaments as a function of time and salt concentration (cS) for the given protein concentration of 0.07 g L-1. At low cS (10 mM KCl) no lateral or elongational growth is observed, whereas at cS = 50-200 mM, the hydrodynamic cross-sectional radius and the elongation rate increases with cS. Rgversus Mw plots suggest that the mass per unit length increases with increasing salt content, which is confirmed by STEM mass measurements. A kinetic model based on rate equations for a two step process is able to accurately describe the variation of mass, length and diffusion coefficient of the filaments with time and provides a consistent description of the elongation accelerated by increasing cS.
Collapse
Affiliation(s)
- Carlos G Lopez
- Chemistry Department, University of Paderborn, 33098 Paderborn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Favre B, Begré N, Bouameur JE, Lingasamy P, Conover GM, Fontao L, Borradori L. Desmoplakin interacts with the coil 1 of different types of intermediate filament proteins and displays high affinity for assembled intermediate filaments. PLoS One 2018; 13:e0205038. [PMID: 30286183 PMCID: PMC6171917 DOI: 10.1371/journal.pone.0205038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction of intermediate filaments (IFs) with the cell-cell adhesion complexes desmosomes is crucial for cytoskeletal organization and cell resilience in the epidermis and heart. The intracellular desmosomal protein desmoplakin anchors IFs to the cell adhesion complexes predominantly via its four last carboxy-terminal domains (C-terminus). However, it remains unclear why the C-terminus of desmoplakin interacts with different IF types or if there are different binding affinities for each type of IFs that may influence the stability of cell-specific adhesion complexes. By yeast three-hybrid and fluorescence binding assays, we found that the coiled-coil 1 of the conserved central rod domain of the heterodimeric cytokeratins (Ks) 5 and 14 (K5/K14) was required for their interaction with the C-terminus of desmoplakin, while their unique amino head- and C-tail domains were dispensable. Similar findings were obtained in vitro with K1/K10, and the type III IF proteins desmin and vimentin. Binding assays testing the C-terminus of desmoplakin with assembled K5/K14 and desmin IFs yielded an apparent affinity in the nM range. Our findings reveal that the same conserved domain of IF proteins binds to the C-terminus of desmoplakin, which may help explain the previously reported broad binding IF-specificity to desmoplakin. Our data suggest that desmoplakin high-affinity binding to diverse IF proteins ensures robust linkages of IF cytoskeleton and desmosomes that maintain the structural integrity of cellular adhesion complexes. In summary, our results give new insights into the molecular basis of the IF-desmosome association.
Collapse
Affiliation(s)
- Bertrand Favre
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Nadja Begré
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jamal-Eddine Bouameur
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Prakash Lingasamy
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gloria M. Conover
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lionel Fontao
- Department of Dermatology, Geneva University Hospitals, Geneva, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
14
|
Sawant M, Schwarz N, Windoffer R, Magin TM, Krieger J, Mücke N, Obara B, Jankowski V, Jankowski J, Wally V, Lettner T, Leube RE. Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability. J Invest Dermatol 2017; 138:627-636. [PMID: 29080682 DOI: 10.1016/j.jid.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII-/-) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.
Collapse
Affiliation(s)
- Mugdha Sawant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Jan Krieger
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Boguslaw Obara
- School of Engineering and Computing Sciences, Durham University, Durham, UK
| | - Vera Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
16
|
Premchandar A, Kupniewska A, Bonna A, Faure G, Fraczyk T, Roldan A, Hoffmann B, Faria da Cunha M, Herrmann H, Lukacs GL, Edelman A, Dadlez M. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8. Protein Sci 2017; 26:343-354. [PMID: 27870250 DOI: 10.1002/pro.3086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1.
Collapse
Affiliation(s)
| | - Anna Kupniewska
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Arkadiusz Bonna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Grazyna Faure
- Unité Récepteurs-Canaux; Institut Pasteur, CNRS, URA 2182, Paris, F-75015, France
| | - Tomasz Fraczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Ariel Roldan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Paris Cedex 05, 75005, France
| | - Mélanie Faria da Cunha
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Harald Herrmann
- Department of Molecular Genetics, German Cancer Research Center, Heidelberg, D-69120, Germany.,Institute of Neuropathology, University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Aleksander Edelman
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| |
Collapse
|
17
|
Premchandar A, Mücke N, Poznański J, Wedig T, Kaus-Drobek M, Herrmann H, Dadlez M. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J Biol Chem 2016; 291:24931-24950. [PMID: 27694444 PMCID: PMC5122765 DOI: 10.1074/jbc.m116.748145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.
Collapse
Affiliation(s)
- Aiswarya Premchandar
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Jarosław Poznański
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Magdalena Kaus-Drobek
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, and
- the Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Michał Dadlez
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland,
- the Institute of Genetics and Biotechnology, Biology Department, University of Warsaw, Miecznikowa 3, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Abstract
A mechanism of intermediate filament disassembly regulation is proposed in which disassembly is regulated by the amount of proteins assembled in networks. It is also hypothesized that a delay might exist between regulation and actual disassembly. Under realistic biological conditions of assembly and disassembly, it is shown that such a delay is harmless and does not destabilize the organization of intermediate filaments in networks. However, for high rates of disassembly, the model predicts that delay can destabilize the organization, with the intermediate filament material oscillating between organizations mainly in networks and in nonfilamentous particles.
Collapse
Affiliation(s)
- Chengjun Sun
- School of Management and Economics, Kunming University of Science and Technology, Kunming, P. R. China
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
19
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
20
|
Deek J, Hecht F, Rossetti L, Wißmiller K, Bausch AR. Mechanics of soft epithelial keratin networks depend on modular filament assembly kinetics. Acta Biomater 2016; 43:218-229. [PMID: 27403885 DOI: 10.1016/j.actbio.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/04/2016] [Accepted: 07/09/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Structural adaptability is a pivotal requirement of cytoskeletal structures, enabling their reorganization to meet the cellular needs. Shear stress, for instance, results in large morphological network changes of the human soft epithelial keratin pair K8:K18, and is accompanied by an increase in keratin phosphorylation levels. Yet the mechanisms responsible for the disruption of the network structure in vivo remain poorly understood. To understand the effect of the stress-related site-specific phosphorylation of the K8:K18 pair, we created phosphomimicry mutants - K8(S431E), K8(S73E), K18(S52E) - in vitro, and investigated the various steps of keratin assembly from monomer to network structure using fluorescence and electron microscopy, and using rheology characterized their network mechanical properties. We find that the addition of a charged group produces networks with depleted intra-connectivity, which translates to a mechanically weaker and more deformable network. This large variation in network structure is achieved by the formation of shorter mutant filaments, which exhibit differing assembly kinetics and a manifestly reduced capacity to form the extended structures characteristic of the wild-type system. The similarity in outcome for all the phosphomimicry mutants explored points to a more general mechanism of structural modulation of intermediate filaments via phosphorylation. Understanding the role of kinetic effects in the construction of these cytoskeletal biopolymer networks is critical to elucidating their structure-function properties, providing new insight for the design of keratin-inspired biomaterials. STATEMENT OF SIGNIFICANCE Structural remodeling of cytoskeletal networks accompanies many cellular processes. Interestingly, levels of phosphorylation of the human soft epithelial keratin pair K8:K18 increase during their stress-related structural remodeling. Our multi-scale study sheds light on the poorly understood mechanism with which site-specific phosphorylation induces disruption of the keratin network structure in vivo. We show how phosphorylation reduces keratin filament length, an effect that propagates through to the mesoscopic structure, resulting in the formation of connectivity-depleted and mechanically weaker networks. We determine that the intrinsically-set filament-to-filament attractions that drive bundle assembly give rise to the structural variability by enabling the formation of kinetically-arrested structures. Overall, our results shed light on how self-assembled intermediate filament structures can be tailored to exhibit different structural functionalities.
Collapse
Affiliation(s)
- Joanna Deek
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Fabian Hecht
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Leone Rossetti
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Katharina Wißmiller
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas R Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
21
|
Martin I, Moch M, Neckernuss T, Paschke S, Herrmann H, Marti O. Both monovalent cations and plectin are potent modulators of mechanical properties of keratin K8/K18 networks. SOFT MATTER 2016; 12:6964-6974. [PMID: 27489177 DOI: 10.1039/c6sm00977h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intermediate filament (IF) networks are a major contributor to cell rigidity and thus serve as vital elements to preserve the integrity of entire cell layers. Keratin K8 and K18 IFs are the basic constituents of the cytoskeleton of epithelial cells. The mechanical properties of K8/K18 networks depend on the structural arrangements of individual filaments within the network. This paper investigates the architecture of these networks in vitro under the influence of the monovalent cation potassium and that of the cytolinker protein plectin. Whereas increasing amounts of potassium ions lead to filament bundling, plectin interlinks filaments at filament intersection points but does not lead to bundle formation. The mechanics of the resulting networks are investigated by microrheology with assembled K8/K18 networks. It is shown that bundling induced by potassium ions significantly stiffens the network. Furthermore, our measurements reveal an increase in plectin-mediated keratin network rigidity as soon as an amount corresponding to more than 20% of the plectin present in cells is added to the keratin IF networks. In parallel, we investigated the influence of plectin on cell rigidity in detergent-extracted epithelial vulva carcinoma derived A431 cells in situ. These cytoskeletons, containing mostly IFs, actin filaments and associated proteins, exhibit a significantly decreased stiffness, when plectin is downregulated to ≈10% of the normal value. Therefore, we assume that plectin, via the formation of IF-IF connections and crosslinking of IFs to actin filaments, is an important contributor to cell stiffness.
Collapse
Affiliation(s)
- I Martin
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - M Moch
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany and Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | - T Neckernuss
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - S Paschke
- Department of General and Visceral Surgery, Ulm University, 89081 Ulm, Germany
| | - H Herrmann
- Division Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany and Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - O Marti
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
23
|
In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLoS One 2016; 11:e0157451. [PMID: 27304995 PMCID: PMC4909217 DOI: 10.1371/journal.pone.0157451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Intermediate filament (IF) elongation proceeds via full-width "mini-filaments", referred to as "unit-length" filaments (ULFs), which instantaneously form by lateral association of extended coiled-coil complexes after assembly is initiated. In a comparatively much slower process, ULFs longitudinally interact end-to-end with other ULFs to form short filaments, which further anneal with ULFs and with each other to increasingly longer filaments. This assembly concept was derived from time-lapse electron and atomic force microscopy data. We previously have quantitatively verified this concept through the generation of time-dependent filament length-profiles and an analytical model that describes assembly kinetics well for about the first ten minutes. In this time frame, filaments are shorter than one persistence length, i.e. ~1 μm, and thus filaments were treated as stiff rods associating via their ends. However, when filaments grow several μm in length over hours, their flexibility becomes a significant factor for the kinetics of the longitudinal annealing process. Incorporating now additional filament length distributions that we have recorded after extended assembly times by total internal reflection fluorescence microscopy (TIRFM), we developed a Monte Carlo simulation procedure that accurately describes the underlying assembly kinetics for large time scales.
Collapse
|
24
|
Nafeey S, Martin I, Felder T, Walther P, Felder E. Branching of keratin intermediate filaments. J Struct Biol 2016; 194:415-22. [PMID: 27039023 DOI: 10.1016/j.jsb.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation.
Collapse
Affiliation(s)
- Soufi Nafeey
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Ines Martin
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany
| | - Tatiana Felder
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany.
| | - Edward Felder
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
25
|
Hémonnot CYJ, Reinhardt J, Saldanha O, Patommel J, Graceffa R, Weinhausen B, Burghammer M, Schroer CG, Köster S. X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells. ACS NANO 2016; 10:3553-3561. [PMID: 26905642 DOI: 10.1021/acsnano.5b07871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juliane Reinhardt
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jens Patommel
- Institute of Structural Physics, Technische Universität Dresden , Zellescher Weg 16, 01069 Dresden, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281, 9000 Ghent, Belgium
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Department of Physics, University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Saldanha O, Brennich ME, Burghammer M, Herrmann H, Köster S. The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. BIOMICROFLUIDICS 2016; 10:024108. [PMID: 27042250 PMCID: PMC4798992 DOI: 10.1063/1.4943916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 05/16/2023]
Abstract
The structural organization of metazoan cells and their shape are established through the coordinated interaction of a composite network consisting of three individual filament systems, collectively termed the cytoskeleton. Specifically, microtubules and actin filaments, which assemble from monomeric globular proteins, provide polar structures that serve motor proteins as tracks. In contrast, intermediate filaments (IFs) assemble from highly charged, extended coiled coils in a hierarchical assembly mechanism of lateral and longitudinal interaction steps into non-polar structures. IF proteins are expressed in a distinctly tissue-specific way and thereby serve to generate the precise plasticity of the respective cells and tissues. Accordingly, in the cell, numerous parameters such as pH and salt concentration are adjusted such that the generation of functional networks is ensured. Here, we transfer the problem for the mesenchymal IF protein vimentin to an in vitro setting and combine small angle x-ray scattering with microfluidics and finite element method simulations. Our approach is adapted to resolve the early assembly steps, which take place in the sub-second to second range. In particular, we reveal the influence of ion species and concentrations on the assembly. By tuning the flow rates and thus concentration profiles, we find a minimal critical salt concentration for the initiation of the assembly. Furthermore, our analysis of the surface sensitive Porod regime in the x-ray data reveals that the formation of first assembly intermediates, so-called unit length filaments, is not a one-step reaction but consists of distinct consecutive lateral association steps followed by radial compaction as well as smoothening of the surface of the full-width filament.
Collapse
Affiliation(s)
- Oliva Saldanha
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | - Martha E Brennich
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | | | | | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
27
|
Premchandar A, Kupniewska A, Tarnowski K, Mücke N, Mauermann M, Kaus-Drobek M, Edelman A, Herrmann H, Dadlez M. Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. J Struct Biol 2015; 192:426-440. [DOI: 10.1016/j.jsb.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
28
|
Hémonnot CYJ, Mauermann M, Herrmann H, Köster S. Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization. Biomacromolecules 2015; 16:3313-21. [PMID: 26327161 DOI: 10.1021/acs.biomac.5b00965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate filament proteins keratin K8 and K18 constitute an essential part of the cytoskeleton in simple epithelial cell layers, structurally enforcing their mechanical resistance. K8/K18 heterodimers form extended filaments and higher-order structures including bundles and networks that bind to cell junctions. We study the assembly of these proteins in the presence of monovalent or divalent ions by small-angle X-ray scattering. We find that both ion species cause an increase of the filament diameter when their concentration is increased; albeit, much higher values are needed for the monovalent compared to the divalent ions for the same effect. Bundling occurs also for monovalent ions and at comparatively low concentrations of divalent ions, very different from vimentin intermediate filaments, a fibroblast-specific cytoskeleton component. We explain these differences by variations in charge and hydrophobicity patterns of the proteins. These differences may reflect the respective physiological situation in stationary cell layers versus single migrating fibroblasts.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Feng X, Coulombe PA. Complementary roles of specific cysteines in keratin 14 toward the assembly, organization, and dynamics of intermediate filaments in skin keratinocytes. J Biol Chem 2015. [PMID: 26216883 DOI: 10.1074/jbc.m115.654749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently showed that inter-keratin disulfide bonding plays an important role in the assembly, organization, and dynamics of keratin intermediate filaments in skin keratinocytes. In particular, cysteine 367 located in the central α-helical rod domain of keratin 14 is necessary for the formation of a stable perinuclear network of keratin filaments (with type II partner keratin 5) in skin keratinocytes analyzed by static and live cell imaging. Here, we show that two additional cysteine residues located in the non-helical head domain of K14, Cys-4 and Cys-40, also participate in inter-keratin disulfide bonding and tandemly play a key role complementary to that of Cys-367 in the assembly, organization, and dynamics of keratin filaments in skin keratinocytes in primary culture. Analysis of K14 variants with single or multiple substitutions of cysteine residues points to a spatial and temporal hierarchy in how Cys-4/Cys-40 and Cys-367 regulate keratin assembly in vitro and filament dynamics in live keratinocytes in culture. Our findings substantiate the importance and complexity of a novel determinant, namely inter-keratin disulfide bonding, for the regulation of several aspects of keratin filaments in surface epithelia.
Collapse
Affiliation(s)
- Xia Feng
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| | - Pierre A Coulombe
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and the Departments of Biological Chemistry, Dermatology, and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
30
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|
31
|
Feng X, Coulombe PA. A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes. ACTA ACUST UNITED AC 2015; 209:59-72. [PMID: 25869667 PMCID: PMC4395492 DOI: 10.1083/jcb.201408079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disulfide bonds involving cysteine 367 in K14 play a crucial role in the assembly, dynamics, and organization of K14-containing filaments in epidermal keratinocytes. We recently reported that a trans-dimer, homotypic disulfide bond involving Cys367 in keratin 14 (K14) occurs in an atomic-resolution structure of the interacting K5/K14 2B domains and in keratinocyte cell lines. Here we show that a sizable fraction of the K14 and K5 protein pools participates in interkeratin disulfide bonding in primary cultures of mouse skin keratinocytes. By comparing the properties of wild-type K14 with a completely cysteine-free variant thereof, we found that K14-dependent disulfide bonding limited filament elongation during polymerization in vitro but was necessary for the genesis of a perinuclear-concentrated network of keratin filaments, normal keratin cycling, and the sessile behavior of the nucleus and whole cell in keratinocytes studied by live imaging. Many of these phenotypes were rescued when analyzing a K14 variant harboring a single Cys residue at position 367. These findings establish disulfide bonding as a novel and important mechanism regulating the assembly, intracellular organization, and dynamics of K14-containing intermediate filaments in skin keratinocytes.
Collapse
Affiliation(s)
- Xia Feng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; and Department of Biological Chemistry and Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; and Department of Biological Chemistry and Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; and Department of Biological Chemistry and Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; and Department of Biological Chemistry and Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
32
|
Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S. Physical properties of cytoplasmic intermediate filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3053-64. [PMID: 25975455 DOI: 10.1016/j.bbamcr.2015.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
Abstract
Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Johanna Block
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktor Schroeder
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Paul Pawelzyk
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Köster
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
33
|
Chernyatina AA, Guzenko D, Strelkov SV. Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 2015; 32:65-72. [DOI: 10.1016/j.ceb.2014.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
|
34
|
Fu T, Guerette PA, Tan RYT, Zhao H, Schefer L, Mezzenga R, Miserez A. Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. J Mater Chem B 2015; 3:2671-2684. [DOI: 10.1039/c4tb01434k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report on the biomimetic production of shock-absorbing proteins from marine snail egg capsules and their self-assembly into coiled-coil filaments.
Collapse
Affiliation(s)
- Tianpei Fu
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Paul A. Guerette
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Raymond Y. T. Tan
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
| | - Hua Zhao
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology, and Research (A*Star)
- Singapore
| | - Larissa Schefer
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Ali Miserez
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| |
Collapse
|
35
|
Nolting JF, Möbius W, Köster S. Mechanics of individual keratin bundles in living cells. Biophys J 2014; 107:2693-9. [PMID: 25468348 PMCID: PMC4255224 DOI: 10.1016/j.bpj.2014.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/04/2022] Open
Abstract
Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed.
Collapse
Affiliation(s)
- Jens-Friedrich Nolting
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
36
|
Kayser J, Haslbeck M, Dempfle L, Krause M, Grashoff C, Buchner J, Herrmann H, Bausch AR. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys J 2014; 105:1778-85. [PMID: 24138853 DOI: 10.1016/j.bpj.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023] Open
Abstract
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation.
Collapse
Affiliation(s)
- Jona Kayser
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pawelzyk P, Mücke N, Herrmann H, Willenbacher N. Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS One 2014; 9:e93194. [PMID: 24690778 PMCID: PMC3972185 DOI: 10.1371/journal.pone.0093194] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023] Open
Abstract
Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0∼c0.5±0.1) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0∼c1.9±0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.
Collapse
Affiliation(s)
- Paul Pawelzyk
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
38
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
39
|
Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 2012; 109:13620-5. [PMID: 22869704 DOI: 10.1073/pnas.1206836109] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.
Collapse
|
40
|
Leitner A, Paust T, Marti O, Walther P, Herrmann H, Beil M. Properties of intermediate filament networks assembled from keratin 8 and 18 in the presence of Mg²+. Biophys J 2012; 103:195-201. [PMID: 22853896 PMCID: PMC3403007 DOI: 10.1016/j.bpj.2012.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg(2+)). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg(2+) at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg(2+)-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.
Collapse
Affiliation(s)
- Anke Leitner
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Tobias Paust
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Othmar Marti
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Paul Walther
- Electron Microscopy Facility, University of Ulm, Ulm, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Beil
- Department of Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|