1
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Lee SC, Collins R, Lin YP, Jamshad M, Broughton C, Harris SA, Hanson BS, Tognoloni C, Parslow RA, Terry AE, Rodger A, Smith CJ, Edler KJ, Ford R, Roper DI, Dafforn TR. Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ. Sci Rep 2019; 9:18712. [PMID: 31822696 PMCID: PMC6904479 DOI: 10.1038/s41598-019-54999-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
The E. coli membrane protein ZipA, binds to the tubulin homologue FtsZ, in the early stage of cell division. We isolated ZipA in a Styrene Maleic Acid lipid particle (SMALP) preserving its position and integrity with native E. coli membrane lipids. Direct binding of ZipA to FtsZ is demonstrated, including FtsZ fibre bundles decorated with ZipA. Using Cryo-Electron Microscopy, small-angle X-ray and neutron scattering, we determine the encapsulated-ZipA structure in isolation, and in complex with FtsZ to a resolution of 1.6 nm. Three regions can be identified from the structure which correspond to, SMALP encapsulated membrane and ZipA transmembrane helix, a separate short compact tether, and ZipA globular head which binds FtsZ. The complex extends 12 nm from the membrane in a compact structure, supported by mesoscale modelling techniques, measuring the movement and stiffness of the regions within ZipA provides molecular scale analysis and visualisation of the early divisome.
Collapse
Affiliation(s)
- Sarah C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Richard Collins
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Claire Broughton
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sarah A Harris
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rosemary A Parslow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann E Terry
- MAX IV Laboratory Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Macquarie, NSW, 2109, Australia
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert Ford
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. mBio 2018; 9:mBio.01008-18. [PMID: 29921670 PMCID: PMC6016244 DOI: 10.1128/mbio.01008-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZipA is an essential cell division protein in Escherichia coli. Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo. Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro. Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro. In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
Collapse
|
4
|
Sobrinos-Sanguino M, Zorrilla S, Monterroso B, Minton AP, Rivas G. Nucleotide and receptor density modulate binding of bacterial division FtsZ protein to ZipA containing lipid-coated microbeads. Sci Rep 2017; 7:13707. [PMID: 29057931 PMCID: PMC5651908 DOI: 10.1038/s41598-017-14160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
ZipA protein from Escherichia coli is one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein. A sedimentation assay was used to measure the equilibrium binding of FtsZ-GDP and FtsZ-GTP to ZipA immobilized at controlled densities on the surface of microbeads coated with a phospholipid mixture resembling the composition of E. coli membrane. We found that for both nucleotide-bound species, the amount of bound FtsZ exceeds the monolayer capacity of the ZipA immobilized beads at high concentrations of free FtsZ. In the case of FtsZ-GDP, equilibrium binding does not appear to be saturable, whereas in the case of FtsZ-GTP equilibrium binding appears to be saturable. The difference between the two modes of binding is attributed to the difference between the composition of oligomers of free FtsZ-GDP and free FtsZ-GTP formed in solution.
Collapse
Affiliation(s)
- Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Allen P Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain.
| |
Collapse
|
5
|
Krupka M, Rowlett VW, Morado D, Vitrac H, Schoenemann K, Liu J, Margolin W. Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat Commun 2017; 8:15957. [PMID: 28695917 PMCID: PMC5508204 DOI: 10.1038/ncomms15957] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
Most bacteria divide using a protein machine called the divisome that spans the cytoplasmic membrane. Key divisome proteins on the membrane’s cytoplasmic side include tubulin-like FtsZ, which forms GTP-dependent protofilaments, and actin-like FtsA, which tethers FtsZ to the membrane. Here we present genetic evidence that in Escherichia coli, FtsA antagonizes FtsZ protofilament bundling in vivo. We then show that purified FtsA does not form straight polymers on lipid monolayers as expected, but instead assembles into dodecameric minirings, often in hexameric arrays. When coassembled with FtsZ on lipid monolayers, these FtsA minirings appear to guide FtsZ to form long, often parallel, but unbundled protofilaments, whereas a mutant of FtsZ (FtsZ*) with stronger lateral interactions remains bundled. In contrast, a hypermorphic mutant of FtsA (FtsA*) forms mainly arcs instead of minirings and enhances lateral interactions between FtsZ protofilaments. Based on these results, we propose that FtsA antagonizes lateral interactions between FtsZ protofilaments, and that the oligomeric state of FtsA may influence FtsZ higher-order structure and divisome function. The actin-like protein FtsA and the tubulin-like protein FtsZ play crucial roles during cell division in most bacteria. Here, the authors show that FtsA forms minirings on lipid monolayers, and present evidence supporting that its oligomeric state modulates the bundling of FtsZ protofilaments.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Dustin Morado
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Heidi Vitrac
- Department of Biochemistry and Molecular Biology, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Kara Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
7
|
Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol 2017; 594:1-30. [DOI: 10.1016/bs.mie.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Zhang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rui Huang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rose Ackermann
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Lucy Waskell
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
9
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:4497-9. [PMID: 26924779 DOI: 10.1002/anie.201600073] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/22/2016] [Indexed: 11/05/2022]
Abstract
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox partner cytochrome b5 (cytb5 ) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane-bound complex in model membranes renders high-resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450-cytb5 complex in peptide-based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450-cytb5 complex in the nanodisc. This is the first successful demonstration of a protein-protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane-bound protein complexes.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rui Huang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rose Ackermann
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
10
|
Akkaladevi N, Mukherjee S, Katayama H, Janowiak B, Patel D, Gogol EP, Pentelute BL, Collier RJ, Fisher MT. Following Natures Lead: On the Construction of Membrane-Inserted Toxins in Lipid Bilayer Nanodiscs. J Membr Biol 2015; 248:595-607. [PMID: 25578459 PMCID: PMC4580227 DOI: 10.1007/s00232-014-9768-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022]
Abstract
Bacterial toxin or viral entry into the cell often requires cell surface binding and endocytosis. The endosomal acidification induces a limited unfolding/refolding and membrane insertion reaction of the soluble toxins or viral proteins into their translocation competent or membrane inserted states. At the molecular level, the specific orientation and immobilization of the pre-transitioned toxin on the cell surface is often an important prerequisite prior to cell entry. We propose that structures of some toxin membrane insertion complexes may be observed through procedures where one rationally immobilizes the soluble toxin so that potential unfolding ↔ refolding transitions that occur prior to membrane insertion orientate away from the immobilization surface in the presence of lipid micelle pre-nanodisc structures. As a specific example, the immobilized prepore form of the anthrax toxin pore translocon or protective antigen can be transitioned, inserted into a model lipid membrane (nanodiscs), and released from the immobilized support in its membrane solubilized form. This particular strategy, although unconventional, is a useful procedure for generating pure membrane-inserted toxins in nanodiscs for electron microscopy structural analysis. In addition, generating a similar immobilized platform on label-free biosensor surfaces allows one to observe the kinetics of these acid-induced membrane insertion transitions. These platforms can facilitate the rational design of inhibitors that specifically target the toxin membrane insertion transitions that occur during endosomal acidification. This approach may lead to a new class of direct anti-toxin inhibitors.
Collapse
Affiliation(s)
- Narahari Akkaladevi
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Srayanta Mukherjee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hiroo Katayama
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Blythe Janowiak
- Department of Biology, Saint Louis University, St. Louis, MO 63101, USA
| | - Deepa Patel
- Department of Microbiology and Molecular Genetics, Harvard University, Boston, MA, USA
| | - Edward P. Gogol
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02193, USA
| | - R. John Collier
- Department of Microbiology and Molecular Genetics, Harvard University, Boston, MA, USA
| | - Mark T. Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Du S, Park KT, Lutkenhaus J. Oligomerization of FtsZ converts the FtsZ tail motif (conserved carboxy-terminal peptide) into a multivalent ligand with high avidity for partners ZipA and SlmA. Mol Microbiol 2014; 95:173-88. [PMID: 25382687 DOI: 10.1111/mmi.12854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
A short conserved motif located at the carboxy terminus of FtsZ, referred to here as the CCTP (conserved carboxy-terminal peptide), is required for the interaction of FtsZ with many of its partners. In Escherichia coli interaction of FtsZ with its membrane anchors, ZipA and FtsA, as well as the spatial regulators of Z-ring formation, MinC and SlmA, requires the CCTP. ZipA interacts with FtsZ with high affinity and interacts with the CCTP with low affinity, but the reason for this difference is not clear. In this study, we show that this difference is due to the oligomerization of FtsZ converting the CCTP to a multivalent ligand that binds multiple ZipAs bound to a surface with high avidity. Artificial dimerization of the CCTP is sufficient to increase the affinity for ZipA in vitro. Similar principles apply to the interaction of FtsZ with SlmA. Although done in vitro, these results have implications for the recruitment of FtsZ to the membrane in vivo, the interaction of FtsZ with spatial regulators and the reconstitution of FtsZ systems in vitro.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
12
|
Herricks JR, Nguyen D, Margolin W. A thermosensitive defect in the ATP binding pocket of FtsA can be suppressed by allosteric changes in the dimer interface. Mol Microbiol 2014; 94:713-27. [PMID: 25213228 DOI: 10.1111/mmi.12790] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/30/2022]
Abstract
In Escherichia coli, initial assembly of the Z ring for cell division requires FtsZ plus the essential Z ring-associated proteins FtsA and ZipA. Thermosensitive mutations in ftsA, such as ftsA27, map in or near its ATP binding pocket and result in cell division arrest at non-permissive temperatures. We found that purified wild-type FtsA bound and hydrolysed ATP, whereas FtsA27 was defective in both activities. FtsA27 was also less able to localize to the Z ring in vivo. To investigate the role of ATP transactions in FtsA function in vivo, we isolated intragenic suppressors of ftsA27. Suppressor lesions in the ATP site restored the ability of FtsA27 to compete with ZipA at the Z ring, and enhanced ATP binding and hydrolysis in vitro. Notably, suppressors outside of the ATP binding site, including some mapping to the FtsA-FtsA subunit interface, also enhanced ATP transactions and exhibited gain of function phenotypes in vivo. These results suggest that allosteric effects, including changes in oligomeric state, may influence the ability of FtsA to bind and/or hydrolyse ATP.
Collapse
Affiliation(s)
- Jennifer R Herricks
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | | | | |
Collapse
|
13
|
Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol 2014; 26:19-27. [DOI: 10.1016/j.ceb.2013.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
|
14
|
Natale P, Pazos M, Vicente M. TheEscherichia colidivisome: born to divide. Environ Microbiol 2013; 15:3169-82. [DOI: 10.1111/1462-2920.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Manuel Pazos
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| |
Collapse
|
15
|
Rivas G, Alfonso C, Jiménez M, Monterroso B, Zorrilla S. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys Rev 2013; 5:63-77. [PMID: 28510160 DOI: 10.1007/s12551-013-0115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022] Open
Abstract
The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mercedes Jiménez
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química Física "Rocasolano" (CSIC), c/Serrano 119, 28006, Madrid, Spain
| |
Collapse
|