1
|
Wang J, Kishimoto M, Jozaki T, Kumeda T, Higashiguchi T, Sunahara A, Ohiro H, Yamasaki K, Namba S. Water-window x-ray emission from laser-produced Au plasma under optimal target thickness and focus conditions. Phys Rev E 2023; 107:065211. [PMID: 37464616 DOI: 10.1103/physreve.107.065211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Optimal laser irradiation conditions for water-window (WW) x-ray emission (2.3-4.4 nm) from an Au plasma are investigated to develop a laboratory-scale WW x-ray source. A minimum Au target thickness of 1 µm is obtained for a laser intensity of ∼10^{13} W/cm^{2} by observing the intensity drop in the WW spectra. Au targets produced by thermal evaporation are found to have a higher conversion efficiency than commercial foil targets for WW x-ray radiation. In addition, optimal laser spots for fixed laser energies (240 and 650 mJ) are found for an Au target ∼1 mm in front of the focal point, where suitable conditions for plasma temperature and plume volume coupling are achieved. The mechanism of the optimal target thickness and spot size can be well explained using a radiation hydrodynamic simulation code.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Maki Kishimoto
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Tomoyuki Jozaki
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tomohiro Kumeda
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Takeshi Higashiguchi
- Department of Electrical and Electronic Engineering, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Tochigi, Japan
| | - Atsushi Sunahara
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Center for Material under Extreme Environment, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, USA
| | - Hikari Ohiro
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Kotaro Yamasaki
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Shinichi Namba
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
2
|
Zhang S, Gervinskas G, Qiu S, Venugopal H, Marceau RKW, de Marco A, Li J, Fu J. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization. NANO LETTERS 2022; 22:6501-6508. [PMID: 35926226 DOI: 10.1021/acs.nanolett.2c01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New high-resolution imaging methods for biological samples such as atom probe tomography (APT), facilitated by the invention of laser-pulsed atom probes and cryo-transfer procedures, have recently emerged. However, ensuring the vitreous state of the fabricated aqueous needle-shaped APT samples remains a challenge despite it being crucial for characterizing biomolecules such as proteins and cellular architectures in their near-native state. Our work investigated three potential approaches: (1) open microcapillary (OMC) method, (2) high-pressure freezing method (HPF), and (3) graphene encapsulation method. Diffraction patterns of the needle specimens acquired by cryo-TEM have demonstrated the vitreous state of the ice needles, although limited to the tip regions, has been achieved with the three proposed approaches. With the capability to prepare vitreous ice needles from hydrated samples of up to ∼200 μm thickness (HPF), combined use of the three approaches opens new avenues for future near-atomic imaging of biological cells in their near-native state.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Shi Qiu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Ross K W Marceau
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
4
|
Hempel C, Kapishnikov S, Perez-Berna AJ, Werner S, Guttmann P, Pereiro E, Qvortrup K, Andresen TL. The need to freeze-Dehydration during specimen preparation for electron microscopy collapses the endothelial glycocalyx regardless of fixation method. Microcirculation 2020; 27:e12643. [PMID: 32542908 DOI: 10.1111/micc.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Medical Parasitology, Department for Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Kapishnikov
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephan Werner
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Peter Guttmann
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Guo J, Larabell CA. Soft X-ray tomography: virtual sculptures from cell cultures. Curr Opin Struct Biol 2019; 58:324-332. [PMID: 31495562 PMCID: PMC6791522 DOI: 10.1016/j.sbi.2019.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Cellular complexity is represented best in high-spatial resolution, three-dimensional (3D) reconstructions. Soft X-ray tomography (SXT) generates detailed volumetric reconstructions of cells preserved in a near-to-native, frozen-hydrated state. SXT is broadly applicable and can image specimens ranging from bacteria to large mammalian cells. As a reference, we summarize light and electron microscopic methods. We then present an overview of SXT and discuss its role in cellular imaging. We detail the methods used to image biological specimens and present recent highlights that illustrate the capabilities of the technique. We conclude by discussing correlative imaging, specifically the combination of SXT and fluorescence microscopy performed on the same specimen. This correlated approach combines the structural morphology of a cell with its physiological characteristics to build a deeply informative composite view.
Collapse
Affiliation(s)
- Jessica Guo
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Carolyn A Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
6
|
Abstract
Electron cryo-tomography using the scanning transmission modality (STEM) enables 3D reconstruction of unstained, vitrified specimens as thick as 1μm or more. Contrast is related to mass/thickness and atomic number, providing quantifiable chemical characterization and mass mapping of intact prokaryotic and eukaryotic cells. Energy dispersive X-ray spectroscopy by STEM provides a simple, on-the-spot chemical identification of the elemental composition in sub-cellular organic bodies or mineral deposits. This chapter provides basic background and practical information for performing cryo-STEM tomography on vitrified biological cells.
Collapse
Affiliation(s)
- Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel.
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Expanding horizons of cryo-tomography to larger volumes. Curr Opin Microbiol 2018; 43:155-161. [DOI: 10.1016/j.mib.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
8
|
Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci Rep 2017; 7:7610. [PMID: 28790371 PMCID: PMC5548722 DOI: 10.1038/s41598-017-06650-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 11/08/2022] Open
Abstract
A key drug target for malaria has been the detoxification pathway of the iron-containing molecule heme, which is the toxic byproduct of hemoglobin digestion. The cornerstone of heme detoxification is its sequestration into hemozoin crystals, but how this occurs remains uncertain. We report new results of in vivo rate of heme crystallization in the malaria parasite, based on a new technique to measure element-specific concentrations at defined locations in cell ultrastructure. Specifically, a high resolution correlative combination of cryo soft X-ray tomography has been developed to obtain 3D parasite ultrastructure with cryo X-ray fluorescence microscopy to measure heme concentrations. Our results are consistent with a model for crystallization via the heme detoxification protein. Our measurements also demonstrate the presence of considerable amounts of non-crystalline heme in the digestive vacuole, which we show is most likely contained in hemoglobin. These results suggest a tight coupling between hemoglobin digestion and heme crystallization, highlighting a new link in the crystallization pathway for drug development.
Collapse
|
9
|
Biochemistry of malaria parasite infected red blood cells by X-ray microscopy. Sci Rep 2017; 7:802. [PMID: 28400621 PMCID: PMC5429762 DOI: 10.1038/s41598-017-00921-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 01/17/2023] Open
Abstract
Red blood cells infected by the malaria parasite Plasmodium falciparum are correlatively imaged by tomography using soft X-rays as well as by scanning hard nano-X-ray beam to obtain fluorescence maps of various elements such as S and Fe. In this way one can deduce the amount of Fe bound either in hemoglobin or in hemozoin crystals in the digestive vacuole of the malaria parasite as well as determine the hemoglobin concentrations in the cytosols of the red blood cell and of the parasite. Fluorescence map of K shows that in the parasite’s schizont stage the K concentration in the red blood cell cytosol is diminished by a factor of seven relative to a pristine red blood cell but the total amount of K in the infected red blood cell is the same as in the pristine red blood cell.
Collapse
|
10
|
Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L. Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. J Am Chem Soc 2016; 138:14931-14940. [PMID: 27934213 DOI: 10.1021/jacs.6b07584] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
Collapse
Affiliation(s)
| | | | - Sergey Kapishnikov
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, 08290 Cerdanyola del Valles, Barcelona, Spain
| | | | - Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | | | | |
Collapse
|
11
|
Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography. Sci Rep 2016; 6:27629. [PMID: 27282220 PMCID: PMC4901327 DOI: 10.1038/srep27629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission.
Collapse
|
12
|
Cheng L, Sun DW, Zhu Z, Zhang Z. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Crit Rev Food Sci Nutr 2015; 57:769-781. [DOI: 10.1080/10408398.2015.1004569] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Guttmann P, Bittencourt C. Overview of nanoscale NEXAFS performed with soft X-ray microscopes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:595-604. [PMID: 25821700 PMCID: PMC4362056 DOI: 10.3762/bjnano.6.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 05/28/2023]
Abstract
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
Collapse
Affiliation(s)
- Peter Guttmann
- Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | |
Collapse
|
14
|
Duke EMH, Razi M, Weston A, Guttmann P, Werner S, Henzler K, Schneider G, Tooze SA, Collinson LM. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 2014; 143:77-87. [PMID: 24238600 PMCID: PMC4045213 DOI: 10.1016/j.ultramic.2013.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022]
Abstract
Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from 'hotspots' on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities.
Collapse
Affiliation(s)
- Elizabeth M H Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Minoo Razi
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Anne Weston
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin, Germany
| | - Stephan Werner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin, Germany
| | - Katja Henzler
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin, Germany
| | - Gerd Schneider
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin, Germany
| | - Sharon A Tooze
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Lucy M Collinson
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, UK.
| |
Collapse
|
15
|
Carzaniga R, Domart MC, Collinson LM, Duke E. Cryo-soft X-ray tomography: a journey into the world of the native-state cell. PROTOPLASMA 2014; 251:449-58. [PMID: 24264466 PMCID: PMC3927064 DOI: 10.1007/s00709-013-0583-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 05/21/2023]
Abstract
One of the ultimate aims of imaging in biology is to achieve molecular localisation in the context of the structure of cells in their native state. Here, we review the current state of the art in cryo-soft X-ray tomography (cryo-SXT), which is the only imaging modality that can provide nanoscale 3D information from cryo-preserved, unstained, whole cells thicker than 1 μm. Correlative cryo-fluorescence and cryo-SXT adds functional information to structure, enabling studies of cellular events that cannot be captured using light, electron or X-ray microscopes alone.
Collapse
Affiliation(s)
- Raffaella Carzaniga
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, London, WC2A 3LY UK
| | - Marie-Charlotte Domart
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, London, WC2A 3LY UK
| | - Lucy M. Collinson
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, London, WC2A 3LY UK
| | - Elizabeth Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK
| |
Collapse
|
16
|
Dent KC, Hagen C, Grünewald K. Critical step-by-step approaches toward correlative fluorescence/soft X-ray cryo-microscopy of adherent mammalian cells. Methods Cell Biol 2014; 124:179-216. [PMID: 25287842 DOI: 10.1016/b978-0-12-801075-4.00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Soft X-ray cryo-microscopy/tomography with its extraordinary capability to map vitreous cells with high absorption contrast in their full three-dimensional extent, and at a resolution exceeding super-resolution fluorescence microscopy, is a valuable tool for integrative structural cell biology. Focusing on cell biological applications, its ongoing methodological development gained momentum by combining it with fluorescence cryo-microscopy, thus correlating highly resolved structural and specific information in situ. In this chapter, we provide a basic description of the techniques, as well as an overview of equipment and methods available to carry out correlative soft X-ray cryo-tomography experiments on frozen-hydrated cells grown on a planar support. Our aim here is to suggest ways that biologically representative data can be recorded to the highest possible resolution, while also keeping in mind the limitations of the technique during data acquisition and analysis. We have written from our perspective as electron cryo-microscopists/structural cell biologists who have experience using correlative fluorescence/cryoXM/T at synchrotron beamlines presently available for external users in Europe (HZB TXM at U41-FSGM, BESSY II, Berlin/Germany; Carl Zeiss TXMs at MISTRAL, ALBA, Barcelona/Spain, and B24, DLS, Oxfordshire, UK).
Collapse
Affiliation(s)
- Kyle C Dent
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christoph Hagen
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J Struct Biol 2013; 184:355-60. [DOI: 10.1016/j.jsb.2013.09.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/22/2013] [Accepted: 09/27/2013] [Indexed: 11/21/2022]
|