1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Jacobson DR, Perkins TT. Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2313818121. [PMID: 38324569 PMCID: PMC10873598 DOI: 10.1073/pnas.2313818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR's G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the "open" portion of bR's photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR's open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
Collapse
Affiliation(s)
- David R. Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
| | - Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
3
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
5
|
Wei J, Moore K, Bammes B, Levin BDA, Morgan D, Voyles PM. Deep Learning Approach for High-accuracy Electron Counting of Direct Electron Detectors at Increased Electron Dose. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:702-704. [PMID: 37613170 DOI: 10.1093/micmic/ozad067.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Jingrui Wei
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kalani Moore
- Direct Electron L.P., San Diego, CA, United States of America
| | - Benjamin Bammes
- Direct Electron L.P., San Diego, CA, United States of America
| | | | | | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
6
|
Seeing the unseen: High-resolution AFM imaging captures antibiotic action in bacterial membranes. Nat Commun 2022; 13:6196. [PMID: 36271086 PMCID: PMC9587010 DOI: 10.1038/s41467-022-33839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
|
7
|
Tsuji A, Yamashita H, Hisatomi O, Abe M. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Sci Rep 2022; 12:12903. [PMID: 35941201 PMCID: PMC9359980 DOI: 10.1038/s41598-022-17228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dimerization is critical for transcription factors (TFs) to bind DNA and regulate a wide variety of cellular functions; however, the molecular mechanisms remain to be completely elucidated. Here, we used high-speed atomic force microscopy (HS-AFM) to observe the dimerization process for a photoresponsive TF Photozipper (PZ), which consists of light–oxygen–voltage-sensing (LOV) and basic-region-leucine-zipper (bZIP) domains. HS-AFM visualized not only the oligomeric states of PZ molecules forming monomers and dimers under controlled dark–light conditions but also the domain structures within each molecule. Successive AFM movies captured the dimerization process for an individual PZ molecule and the monomer–dimer reversible transition during dark–light cycling. Detailed AFM images of domain structures in PZ molecules demonstrated that the bZIP domain entangled under dark conditions was loosened owing to light illumination and fluctuated around the LOV domain. These observations revealed the role of the bZIP domain in the dimerization processes of a TF.
Collapse
Affiliation(s)
- Akihiro Tsuji
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Osamu Hisatomi
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Abstract
Bacteriorhodopsin is a seven-helix light-driven proton-pump that was structurally and functionally extensively studied. Despite a wealth of data, the single molecule kinetics of the reaction cycle remain unknown. Here, we use high-speed atomic force microscopy methods to characterize the single molecule kinetics of wild-type bR exposed to continuous light and short pulses. Monitoring bR conformational changes with millisecond temporal resolution, we determine that the cytoplasmic gate opens 2.9 ms after photon absorption, and stays open for proton capture for 13.2 ms. Surprisingly, a previously active protomer cannot be reactivated for another 37.6 ms, even under excess continuous light, giving a single molecule reaction cycle of ~20 s−1. The reaction cycle slows at low light where the closed state is prolonged, and at basic or acidic pH where the open state is extended. Here, the authors use high-speed atomic force microscopy (HS-AFM) methods to characterize the single molecule kinetics of wild-type bacteriorhodopsin (bR) with millisecond temporal resolution, providing new insights into the bR conformational cycle.
Collapse
|
9
|
Ishihara S, Sasagawa Y, Kameda T, Yamashita H, Umeda M, Kotomura N, Abe M, Shimono Y, Nikaido I. Local states of chromatin compaction at transcription start sites control transcription levels. Nucleic Acids Res 2021; 49:8007-8023. [PMID: 34233004 PMCID: PMC8373074 DOI: 10.1093/nar/gkab587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The ‘open’ and ‘compact’ regions of chromatin are considered to be regions of active and silent transcription, respectively. However, individual genes produce transcripts at different levels, suggesting that transcription output does not depend on the simple open-compact conversion of chromatin, but on structural variations in chromatin itself, which so far have remained elusive. In this study, weakly crosslinked chromatin was subjected to sedimentation velocity centrifugation, which fractionated the chromatin according to its degree of compaction. Open chromatin remained in upper fractions, while compact chromatin sedimented to lower fractions depending on the level of nucleosome assembly. Although nucleosomes were evenly detected in all fractions, histone H1 was more highly enriched in the lower fractions. H1 was found to self-associate and crosslinked to histone H3, suggesting that H1 bound to H3 interacts with another H1 in an adjacent nucleosome to form compact chromatin. Genome-wide analyses revealed that nearly the entire genome consists of compact chromatin without differences in compaction between repeat and non-repeat sequences; however, active transcription start sites (TSSs) were rarely found in compact chromatin. Considering the inverse correlation between chromatin compaction and RNA polymerase binding at TSSs, it appears that local states of chromatin compaction determine transcription levels.
Collapse
Affiliation(s)
- Satoru Ishihara
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takeru Kameda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mana Umeda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Naoe Kotomura
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yohei Shimono
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.,Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Abstract
Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor. Zabelskii et al. present a structural and functional analysis of the lightdriven proton pump LR (Mac) from the fungus Leptosphaeria maculans. Their findings indicate that the archaeal ancestry of eukaryotic type 1 rhodopsins, and that the archaeal host of the proto-mitochondrial endosymbiont was capable of light-driven proton pumping.
Collapse
|
11
|
Heath GR, Lin YC, Matin TR, Scheuring S. Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods Enzymol 2021; 652:127-159. [PMID: 34059280 DOI: 10.1016/bs.mie.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channels and transporters are vital for transmembrane transport of ions and solutes, and also of larger compounds such as lipids and macromolecules. Therefore, they are crucial in many biological processes such as sensing, signal transduction, and the regulation of the distribution of molecules. Dysfunctions of these membrane proteins are associated to numerous diseases, and their interaction with drugs is critical in medicine. Understanding the behavior of channels and transporters requires structural and dynamic information to decipher the molecular mechanisms underlying their function. High-Speed Atomic Force Microscopy (HS-AFM) now allows the study of single transmembrane channels and transporters in action under physiological conditions, i.e., at ambient temperature and pressure, in physiological buffer and in a membrane, and in a most direct, label-free manner. In this chapter, we discuss the HS-AFM sample preparation, application, and data analysis protocols to study the structural and conformational dynamics of membrane-embedded channels and transporters.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Yi-Chih Lin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Tina R Matin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States; Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, United States.
| |
Collapse
|
12
|
Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2020083118. [PMID: 33753487 DOI: 10.1073/pnas.2020083118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR's G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule-derived ΔΔG for mutant L223A (-2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔG for mutant V217A was 2.2-fold larger (-2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217 and a natively bound squalene lipid, highlighting the contribution of membrane protein-lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔG for a fully folded membrane protein embedded in its native bilayer.
Collapse
|
13
|
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, Kwan TOC, Hoi KK, Yen HY, Vial A, Milhiet PE, Robinson CV, Schapiro I, Moraes I, Watts A. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat Commun 2021; 12:629. [PMID: 33504778 PMCID: PMC7840839 DOI: 10.1038/s41467-020-20596-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.1 Å and 1.3 Å resolution respectively. We observe significant differences between the two states in the dynamics of water molecules that are coupled via H-bonds to the retinal Schiff Base. Supporting QM/MM calculations reveal how the DA state permits a thermodynamic equilibrium between retinal isomers to be established, and how this same change is prevented in the ground state in the absence of light. We suggest that the different arrangement of internal water networks in AR3 is responsible for the faster photocycle kinetics compared to homologs.
Collapse
Affiliation(s)
- Juan F Bada Juarez
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Judge
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Javier Vinals
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - James Birch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Tristan O C Kwan
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK
| | - Kin Kuan Hoi
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hsin-Yung Yen
- OMass Therapeutics, The Schrodinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Anthony Vial
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Carol V Robinson
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK.
| | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
14
|
Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M. In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. SCIENCE ADVANCES 2021; 7:7/3/eabd7888. [PMID: 33523906 PMCID: PMC7810374 DOI: 10.1126/sciadv.abd7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Understanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid made of a polydopamine encapsulating a fluorescent nanodiamond, we measured the intracellular thermal conductivities of HeLa and MCF-7 cells with a spatial resolution of about 200 nm. The mean values determined in these two cell lines are both 0.11 ± 0.04 W m-1 K-1, which is significantly smaller than that of water. Bayesian analysis of the data suggests there is a variation of the thermal conductivity within a cell. These results make the biological impact of transient temperature spikes in a cell much more feasible, and suggest that cells may use heat flux for short-distance thermal signaling.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute for Protein Research, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chongxia Zhong
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Taras Plakhotnik
- School of Mathematics and Physics, The University of Queensland, QLD, Australia.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
15
|
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J 2020; 118:2853-2865. [PMID: 32396848 DOI: 10.1016/j.bpj.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kenshiro Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Eri Hashimoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | | | - Kousuke Shibasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
Hema K, Sureshan KM. β-Sheet to Helical-Sheet Evolution Induced by Topochemical Polymerization: Cross-α-Amyloid-like Packing in a Pseudoprotein with Gly-Phe-Gly Repeats. Angew Chem Int Ed Engl 2020; 59:8854-8859. [PMID: 32149438 DOI: 10.1002/anie.201914975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Protein-mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein-mimics containing triazole linkages as peptide-bond surrogate by topochemical azide-alkyne cycloaddition (TAAC) polymerization of azide- and alkyne-modified peptides. The rationally designed dipeptide N3 -CH2 CO-Phe-NHCH2 CCH (1) crystallized in a parallel β-sheet arrangement and are head-to-tail aligned in a direction perpendicular to the β-sheet-direction. Upon heating, crystals of 1 underwent single-crystal-to-single-crystal polymerization forming a triazole-linked pseudoprotein with Gly-Phe-Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical-sheet orientation in the crystal resembles the cross-α-amyloids, where α-helices are arranged laterally as sheets.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
17
|
Hema K, Sureshan KM. β‐Sheet to Helical‐Sheet Evolution Induced by Topochemical Polymerization: Cross‐α‐Amyloid‐like Packing in a Pseudoprotein with Gly‐Phe‐Gly Repeats. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
18
|
Heath GR, Scheuring S. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr Opin Struct Biol 2019; 57:93-102. [PMID: 30878714 DOI: 10.1016/j.sbi.2019.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in high-speed atomic force microscopy (HS-AFM) have made it possible to study the conformational dynamics of single unlabeled transmembrane channels and transporters. Improving environmental control with the integration of a non-disturbing buffer exchange system, which in turn allows the gradual change of conditions during HS-AFM operation, has provided a breakthrough toward the performance of structural titration experiments. Further advancements in temporal resolution with the use of line scanning and height spectroscopy techniques show how high-speed atomic force microscopy can measure millisecond to microsecond dynamics, pushing this method beyond current spatial and temporal limits offered by less direct techniques.
Collapse
Affiliation(s)
- George R Heath
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
19
|
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 2018; 8:8262. [PMID: 29844455 PMCID: PMC5974397 DOI: 10.1038/s41598-018-26606-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Oligomeric assembly is a common feature of membrane proteins and often relevant to their physiological functions. Determining the stoichiometry and the oligomeric state of membrane proteins in a lipid bilayer is generally challenging because of their large size, complexity, and structural alterations under experimental conditions. Here, we use high-speed atomic force microscopy (HS-AFM) to directly observe the oligomeric states in the lipid membrane of various microbial rhodopsins found within eubacteria to archaea. HS-AFM images show that eubacterial rhodopsins predominantly exist as pentamer forms, while archaeal rhodopsins are trimers in the lipid membrane. In addition, circular dichroism (CD) spectroscopy reveals that pentameric rhodopsins display inverted CD couplets compared to those of trimeric rhodopsins, indicating different types of exciton coupling of the retinal chromophore in each oligomer. The results clearly demonstrate that the stoichiometry of the fundamental oligomer of microbial rhodopsins strongly correlate with the phylogenetic tree, providing a new insight into the relationship between the oligomeric structure and function-structural evolution of microbial rhodopsins.
Collapse
|
20
|
Uchihashi T, Scheuring S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 2018; 1862:229-240. [DOI: 10.1016/j.bbagen.2017.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
|
21
|
Optimum Substrates for Imaging Biological Molecules with High-Speed Atomic Force Microscopy. Methods Mol Biol 2018; 1814:159-179. [PMID: 29956232 DOI: 10.1007/978-1-4939-8591-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent progresses in high-speed atomic force microscopy (HS-AFM) have enabled us to directly visualize dynamic processes of various proteins in liquid conditions. One of the key factors leading to successful HS-AFM observations is the selection of an appropriate substrate depending on molecules to be observed. For the HS-AFM imaging, a target molecule must be absorbed on a substrate by controlling its orientation without impairing the dynamics or physiological function of the molecule. In this chapter, we describe protocols for preparation of substrates that have been used for HS-AFM and then introduce observation examples on dynamic processes of biological molecules.
Collapse
|
22
|
Shibata M, Watanabe H, Uchihashi T, Ando T, Yasuda R. High-speed atomic force microscopy imaging of live mammalian cells. Biophys Physicobiol 2017; 14:127-135. [PMID: 28900590 PMCID: PMC5590786 DOI: 10.2142/biophysico.14.0_127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons.
Collapse
Affiliation(s)
- Mikihiro Shibata
- High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Watanabe
- Research Institute of Biomolecule Metrology Co., Ltd., Tsukuba, Ibaraki 305-0853, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
23
|
Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev 2017; 9:421-429. [PMID: 28762198 DOI: 10.1007/s12551-017-0281-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins are dynamic in nature and work at the single molecule level. Therefore, directly watching protein molecules in dynamic action at high spatiotemporal resolution must be the most straightforward approach to understanding how they function. To make this observation possible, high-speed atomic force microscopy (HS-AFM) has been developed. Its current performance allows us to film biological molecules at 10-16 frames/s, without disturbing their function. In fact, dynamic structures and processes of various proteins have been successfully visualized, including bacteriorhodopsin responding to light, myosin V walking on actin filaments, and even intrinsically disordered proteins undergoing order/disorder transitions. The molecular movies have provided insights that could not have been reached in other ways. Moreover, the cantilever tip can be used to manipulate molecules during successive imaging. This capability allows us to observe changes in molecules resulting from dissection or perturbation. This mode of imaging has been successfully applied to myosin V, peroxiredoxin and doublet microtubules, leading to new discoveries. Since HS-AFM can be combined with other techniques, such as super-resolution optical microscopy and optical tweezers, the usefulness of HS-AFM will be further expanded in the near future.
Collapse
Affiliation(s)
- Toshio Ando
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,CREST, Japan Science and Technology Agency, Tokyo, 102-0075, Japan.
| |
Collapse
|
24
|
Inoue K. The Study and Application of Photoreceptive Membrane Protein, Rhodopsin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
26
|
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T. Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 2016; 160:182-196. [DOI: 10.1016/j.ultramic.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
|
28
|
Oiki S. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. J Physiol 2015; 593:2553-73. [PMID: 25833254 DOI: 10.1113/jp270025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/24/2015] [Indexed: 01/30/2023] Open
Abstract
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
29
|
Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 2015; 5:8724. [PMID: 25735540 PMCID: PMC4348644 DOI: 10.1038/srep08724] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.
Collapse
|
30
|
Tsukamoto T, Demura M, Sudo Y. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation. J Phys Chem B 2014; 118:12383-94. [PMID: 25279934 DOI: 10.1021/jp507374q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | |
Collapse
|
31
|
Ando T. High-speed AFM imaging. Curr Opin Struct Biol 2014; 28:63-8. [DOI: 10.1016/j.sbi.2014.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
|
32
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|