1
|
Matthews CT, Mahmud S, Gardner SG. PhoU homologs from Staphylococcus aureus dimerization and protein interactions. Microbiol Spectr 2025; 13:e0206724. [PMID: 39660905 PMCID: PMC11705898 DOI: 10.1128/spectrum.02067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
PhoU proteins are negative regulators of the phosphate response, regulate virulence, and contribute to antibiotic resistance. Staphylococcus aureus has multiple genes encoding PhoU homologs that regulate persister formation and potentially virulence, but the molecular mechanisms of this regulation are not fully understood. We used a bacterial adenylate cyclase two-hybrid system to assess interactions between PhoU homologs and other proteins known to interact with PhoU from Escherichia coli. S. aureus PhoU (also referred to as PhoU1) interacted with PhoU itself; PitR (also referred to as PhoU2) interacted with PitR itself. We identified potential structural and dimerization models for S. aureus PhoU homologs. Dimerization was confirmed using size exclusion chromatography of purified proteins. These results highlight the complex nature of PhoU proteins. Further analysis may elucidate the potential mechanisms for regulating gene expression, persister formation, and virulence in S. aureus.IMPORTANCEPhoU proteins affect pathogenesis and persister formation in many bacterial species. This protein is essential for signaling environmental phosphate levels in Escherichia coli but is still not well characterized in many other pathogenic bacterial strains. This work identifies some similarities and key differences in Staphylococcus aureus PhoU homologs compared to E. coli PhoU, specifically, PhoU and PitR from S. aureus form homodimers but do not appear to interact with PhoR or phosphate transporter proteins.
Collapse
Affiliation(s)
- Clayton T. Matthews
- School of Science + Mathematics, Emporia State University, Emporia, Kansas, USA
| | - Sakib Mahmud
- School of Science + Mathematics, Emporia State University, Emporia, Kansas, USA
| | - Stewart G. Gardner
- School of Science + Mathematics, Emporia State University, Emporia, Kansas, USA
| |
Collapse
|
2
|
Conaway A, Todorovic I, Mould DL, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586856. [PMID: 38585852 PMCID: PMC10996656 DOI: 10.1101/2024.03.27.586856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
3
|
Deletion of Rv2571c confers resistance to arylamide compounds in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.02334-20. [PMID: 33619059 PMCID: PMC8092897 DOI: 10.1128/aac.02334-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is an urgent global health problem requiring new drugs, new drug targets and an increased understanding of antibiotic resistance. We have determined the mode of resistance to a series of arylamide compounds in M. tuberculosis We isolated M. tuberculosis resistant mutants to two arylamide compounds which are inhibitory to growth under host-relevant conditions (butyrate as a sole carbon source). Thirteen mutants were characterized, and all had mutations in Rv2571c; mutations included a premature stop codon and frameshifts as well as non-synonymous polymorphisms. We isolated a further ten strains with mutations in Rv2571c with resistance. Complementation with a wild-type copy of Rv2571c restored arylamide sensitivity. Over-expression of Rv2571c was toxic in both wild-type and mutant backgrounds. We constructed M. tuberculosis strains with an unmarked deletion of the entire Rv2571c gene by homologous recombination and confirmed that these were resistant to the arylamide series. Rv2571c is a member of the aromatic amino acid transport family and has a fusaric acid resistance domain which is associated with compound transport. Since loss or inactivation of Rv2571c leads to resistance, we propose that Rv2571c is involved in the import of arylamide compounds.
Collapse
|
4
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
5
|
Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A, Agawin NSR. The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N 2-Fixing Cyanobacteria Halothece sp., Found in Association With the Mediterranean Seagrass Posidonia oceanica. Front Microbiol 2019; 10:1903. [PMID: 31507547 PMCID: PMC6713934 DOI: 10.3389/fmicb.2019.01903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N2-fixing prokaryotes. One of these is Halothece sp., a unicellular N2-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N2 fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N2-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N2-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca2+ and Fe3+), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P (PO43−) and Fe in experiments under N2-fixing (low NO3− availability) and non-N2 fixing (high NO3− availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of PO43−, especially under N2-fixing conditions. Moreover, the increased PO43−-uptake was reflected in the increased of the P-cellular content of the cells under N2 fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells (r2 = 0.71, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N2-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antoni Bennasar-Figueras
- Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antonio Tovar-Sanchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Sciences, ICMAN (CSIC), Cádiz, Spain
| | - Nona Sheila R Agawin
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
6
|
Zheng L, Ren M, Xie E, Ding A, Liu Y, Deng S, Zhang D. Roles of Phosphorus Sources in Microbial Community Assembly for the Removal of Organic Matters and Ammonia in Activated Sludge. Front Microbiol 2019; 10:1023. [PMID: 31156575 PMCID: PMC6532738 DOI: 10.3389/fmicb.2019.01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Various phosphorus sources are utilized by microbes in WWTPs, eventually affecting microbial assembly and functions. This study identified the effects of phosphorus source on microbial communities and functions in the activated sludge. By cultivation with 59 phosphorus sources, including inorganic phosphates (IP), nucleoside-monophosphates (NMP), cyclic-nucleoside-monophosphates (cNMP), and other organophosphates (OP), we evaluated the change in removal efficiencies of total organic carbon (TOC) and ammonia, microbial biomass, alkaline phosphatase (AKP) activity, microbial community structure, and AKP-associated genes. TOC and ammonia removal efficiency was highest in IP (64.8%) and cNMP (52.3%) treatments. Microbial community structure changed significantly across phosphorus sources that IP and cNMP encouraged Enterobacter and Aeromonas, respectively. The abundance of phoA and phoU genes was higher in IP treatments, whereas phoD and phoX genes dominated OP treatments. Our findings suggested that the performance of WWTPs was dependent on phosphorus sources and provided new insights into effective WWTP management.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, China
| | - Mengli Ren
- College of Water Science, Beijing Normal University, Beijing, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, China
| | - Yan Liu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Jha V, Tikariha H, Dafale NA, Purohit HJ. Exploring the rearrangement of sensory intelligence in proteobacteria: insight of Pho regulon. World J Microbiol Biotechnol 2018; 34:172. [DOI: 10.1007/s11274-018-2551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
8
|
Zheng JJ, Sinha D, Wayne KJ, Winkler ME. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol 2016; 6:63. [PMID: 27379215 PMCID: PMC4913102 DOI: 10.3389/fcimb.2016.00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022] Open
Abstract
Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Kyle J Wayne
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| |
Collapse
|