1
|
Romanelli V, Annunziata D, Cerchia C, Cerciello D, Piccialli F, Lavecchia A. Enhancing De Novo Drug Design across Multiple Therapeutic Targets with CVAE Generative Models. ACS OMEGA 2024; 9:43963-43976. [PMID: 39493989 PMCID: PMC11525747 DOI: 10.1021/acsomega.4c08027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Drug discovery is a costly and time-consuming process, necessitating innovative strategies to enhance efficiency across different stages, from initial hit identification to final market approval. Recent advancement in deep learning (DL), particularly in de novo drug design, show promise. Generative models, a subclass of DL algorithms, have significantly accelerated the de novo drug design process by exploring vast areas of chemical space. Here, we introduce a Conditional Variational Autoencoder (CVAE) generative model tailored for de novo molecular design tasks, utilizing both SMILES and SELFIES as molecular representations. Our computational framework successfully generates molecules with specific property profiles validated though metrics such as uniqueness, validity, novelty, quantitative estimate of drug-likeness (QED), and synthetic accessibility (SA). We evaluated our model's efficacy in generating novel molecules capable of binding to three therapeutic molecular targets: CDK2, PPARγ, and DPP-IV. Comparing with state-of-the-art frameworks demonstrated our model's ability to achieve higher structural diversity while maintaining the molecular properties ranges observed in the training set molecules. This proposed model stands as a valuable resource for advancing de novo molecular design capabilities.
Collapse
Affiliation(s)
- Virgilio Romanelli
- Department
of Pharmacy, “Drug Discovery Laboratory”, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Annunziata
- Department
of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico II, Naples 80126, Italy
| | - Carmen Cerchia
- Department
of Pharmacy, “Drug Discovery Laboratory”, University of Naples Federico II, Naples 80131, Italy
| | - Donato Cerciello
- Department
of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico II, Naples 80126, Italy
| | - Francesco Piccialli
- Department
of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico II, Naples 80126, Italy
| | - Antonio Lavecchia
- Department
of Pharmacy, “Drug Discovery Laboratory”, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
2
|
Sblano S, Cerchia C, Laghezza A, Piemontese L, Brunetti L, Leuci R, Gilardi F, Thomas A, Genovese M, Santi A, Tortorella P, Paoli P, Lavecchia A, Loiodice F. A chemoinformatics search for peroxisome proliferator-activated receptors ligands revealed a new pan-agonist able to reduce lipid accumulation and improve insulin sensitivity. Eur J Med Chem 2022; 235:114240. [DOI: 10.1016/j.ejmech.2022.114240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
|
3
|
Dutra LA, Lacerda MG, Destro Inácio M, Martins JW, Lopes Silva AC, Bento da Silva P, Chorilli M, Amato AA, Baviera AM, Passarelli M, Guido RV, Dos Santos JL. Discovery of (E)-4-styrylphenoxy-propanamide: A dual PPARα/γ partial agonist that regulates high-density lipoprotein-cholesterol levels, modulates adipogenesis, and improves glucose tolerance in diet-induced obese mice. Bioorg Chem 2022; 120:105600. [DOI: 10.1016/j.bioorg.2022.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
|
4
|
Willems S, Morstein J, Hinnah K, Trauner D, Merk D. A Photohormone for Light-Dependent Control of PPARα in Live Cells. J Med Chem 2021; 64:10393-10402. [PMID: 34213899 DOI: 10.1021/acs.jmedchem.1c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photopharmacology enables the optical control of several biochemical processes using small-molecule photoswitches that exhibit different bioactivities in their cis- and trans-conformations. Such tool compounds allow for high spatiotemporal control of biological signaling, and the approach also holds promise for the development of drug molecules that can be locally activated to reduce target-mediated adverse effects. Herein, we present the expansion of the photopharmacological arsenal to two new members of the peroxisome proliferator-activated receptor (PPAR) family, PPARα and PPARδ. We have developed a set of highly potent PPARα and PPARδ targeting photohormones derived from the weak pan-PPAR agonist GL479 that can be deactivated by light. The photohormone 6 selectively activated PPARα in its trans-conformation with high selectivity over the related PPAR subtypes and was used in live cells to switch PPARα activity on and off in a light- and time-dependent fashion.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johannes Morstein
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Konstantin Hinnah
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. TOXICS 2021; 9:45. [PMID: 33652875 PMCID: PMC7996760 DOI: 10.3390/toxics9030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
The biological impacts of per- and polyfluorinated alkyl substances (PFAS) are linked to their protein interactions. Existing research has largely focused on serum albumin and liver fatty acid binding protein, and binding affinities determined with a variety of methods show high variability. Moreover, few data exist for short-chain PFAS, though their prevalence in the environment is increasing. We used molecular dynamics (MD) to screen PFAS binding to liver and intestinal fatty acid binding proteins (L- and I-FABPs) and peroxisome proliferator activated nuclear receptors (PPAR-α, -δ and -γ) with six perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs). Equilibrium dissociation constants, KDs, were experimentally determined via equilibrium dialysis (EqD) with liquid chromatography tandem mass spectrometry for protein-PFAS pairs. A comparison was made between KDs derived from EqD, both here and in literature, and other in vitro approaches (e.g., fluorescence) from literature. EqD indicated strong binding between PPAR-δ and perfluorobutanoate (0.044 ± 0.013 µM) and perfluorohexane sulfonate (0.035 ± 0.0020 µM), and between PPAR-α and perfluorohexanoate (0.097 ± 0.070 µM). Unlike binding affinities for L-FABP, which increase with chain length, KDs for PPARs showed little chain length dependence by either MD simulation or EqD. Compared with other in vitro approaches, EqD-based KDs consistently indicated higher affinity across different proteins. This is the first study to report PPARs binding with short-chain PFAS with KDs in the sub-micromolar range.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Emerson Christie
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Weixiao Cheng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Mandy Michalsen
- U.S. Army Engineer Research Development Center—Environmental Lab, Vicksburg, MS 39180, USA;
| | - Jennifer Field
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
- Secondary Appointment, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Morishita K, Miike T, Takeda S, Fukui M, Ito Y, Kitao T, Ozawa SI, Hirono S, Shirahase H. (S)-1,2,3,4-Tetrahydroisoquinoline Derivatives Substituted with an Acidic Group at the 6-Position as a Selective Peroxisome Proliferator-Activated Receptor γ Partial Agonist. Chem Pharm Bull (Tokyo) 2019; 67:1211-1224. [PMID: 31685749 DOI: 10.1248/cpb.c19-00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of 2,6,7-substituted 3-unsubstituted 1,2,3,4-tetrahydroisoquinoline derivatives were synthesized to find a peroxisome proliferator-activated receptor γ (PPARγ) partial agonist. Among the derivatives, (E)-7-[2-(cyclopent-3-eny)-5-methyloxazol-4-ylmethoxy]-2-[3-(2-furyl)acryloyl]-6-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinoline (20g) exhibited potent partial agonist activity (EC50 = 13 nM, maximal response 30%) and very weak protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 1100 nM), indicating a selective PPARγ partial agonist. A computational docking calculation revealed that 20g bound to PPARγ in a similar manner to that of known partial agonists. In male and female KK-Ay mice with insulin resistance and hyperglycemia, 20g at 30 mg/kg for 7 d significantly reduced plasma glucose levels, but not triglyceride levels. The effects of 20g were similar to those of pioglitazone at 10 mg/kg. In conclusion, the 2,6,7-substituted 1,2,3,4-tetrahydroisoquinoline with an acidic group at the 6-position provides a novel scaffold for selective PPARγ partial agonists and 20g exerted anti-diabetic effects via the partial activation of PPARγ.
Collapse
Affiliation(s)
- Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tomohiro Miike
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shigemitsu Takeda
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masaki Fukui
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yuma Ito
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
7
|
Linciano P, De Filippis B, Ammazzalorso A, Amoia P, Cilurzo F, Fantacuzzi M, Giampietro L, Maccallini C, Petit C, Amoroso R. Druggability profile of stilbene-derived PPAR agonists: determination of physicochemical properties and PAMPA study. MEDCHEMCOMM 2019; 10:1892-1899. [PMID: 32206235 PMCID: PMC7069374 DOI: 10.1039/c9md00286c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
PPAR agonists represent a new therapeutic opportunity for the prevention and treatment of neurodegenerative disorders, but their pharmacological success depends on favourable pharmacokinetic properties and capability to cross the BBB. In this study, we assayed some PPAR agonists previously synthesized by us for their physicochemical properties, with particular references to lipophilicity, solubility and permeability profiles, using the PAMPA. Although tested compounds showed high lipophilicity and low aqueous solubility, the results revealed a good overall druggability profile, encouraging further studies in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences , University of Modena , via Giuseppe Campi 103 , 41125 Modena , Italy
| | - Barbara De Filippis
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Alessandra Ammazzalorso
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Pasquale Amoia
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Felisa Cilurzo
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Marialuigia Fantacuzzi
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Letizia Giampietro
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Cristina Maccallini
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Charlotte Petit
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , CMU - 1 rue Michel-Servet , 1211 Geneva , Switzerland
| | - Rosa Amoroso
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| |
Collapse
|
8
|
Pollinger J, Schierle S, Neumann S, Ohrndorf J, Kaiser A, Merk D. Computer-Assisted Selective Optimization of Side-Activities-from Cinalukast to a PPARα Modulator. ChemMedChem 2019; 14:1343-1348. [PMID: 31141287 DOI: 10.1002/cmdc.201900286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/10/2022]
Abstract
Automated computational analogue design and scoring can speed up hit-to-lead optimization and appears particularly promising in selective optimization of side-activities (SOSA) where possible analogue diversity is confined. Probing this concept, we employed the cysteinyl leukotriene receptor 1 (CysLT1 R) antagonist cinalukast as lead for which we discovered peroxisome proliferator-activated receptor α (PPARα) modulatory activity. We automatically generated a virtual library of close analogues and classified these roughly 8000 compounds for PPARα agonism and CysLT1 R antagonism using automated affinity scoring and machine learning. A computationally preferred analogue for SOSA was synthesized, and in vitro characterization indeed revealed a marked activity shift toward enhanced PPARα activation and diminished CysLT1 R antagonism. Thereby, this prospective application study highlights the potential of automating SOSA.
Collapse
Affiliation(s)
- Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Sebastian Neumann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Julia Ohrndorf
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
9
|
Jiang Z, Liu X, Yuan Z, He H, Wang J, Zhang X, Gong Z, Hou L, Shen L, Guo F, Zhang J, Wang J, Xu D, Liu Z, Li H, Chen X, Long C, Li J, Chen S. Discovery of a Novel Selective Dual Peroxisome Proliferator-Activated Receptor α/δ Agonist for the Treatment of Primary Biliary Cirrhosis. ACS Med Chem Lett 2019; 10:1068-1073. [PMID: 31312410 PMCID: PMC6627728 DOI: 10.1021/acsmedchemlett.9b00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
A novel peroxisome proliferator-activated receptor (PPAR) α/δ dual agonist 5c was developed with an EC50 of 8 nM for PPARα, 5 nM for PPARδ, and >300-fold selectivity against PPARγ (EC50 = 2939 nM), respectively. Further ADME and pharmacokinetic studies indicated 5c possessed distinguished in vitro and in vivo profiles. The excellent in vivo efficacy of compound 5c was demonstrated by the rat primary biliary cirrhosis (PBC) model.
Collapse
Affiliation(s)
- Zhigan Jiang
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Xing Liu
- R&D
Center, Guangdong Zhongsheng Pharmaceutical
Co., Ltd. The Information
Area of Xihu Industrial Base, Shilong Town, Dongguan, Guangdong Province 523325, P. R. China
| | - Zhiliang Yuan
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Haiying He
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Jing Wang
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Xiao Zhang
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Zhen Gong
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Lijuan Hou
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Liang Shen
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Fengxun Guo
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Jiliang Zhang
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Jianhua Wang
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Deming Xu
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Zhuowei Liu
- R&D
Center, Guangdong Zhongsheng Pharmaceutical
Co., Ltd. The Information
Area of Xihu Industrial Base, Shilong Town, Dongguan, Guangdong Province 523325, P. R. China
- Guangdong
Raynovent Biotech Co., Ltd., Room 1701-1705, Main Building of Rongyi Tower, No. 5, Xinxi Road,
SongShan Lake Hi-tech Industrial Development Zone, Dongguan, Guangdong Province 523808, P. R. China
| | - Haijun Li
- R&D
Center, Guangdong Zhongsheng Pharmaceutical
Co., Ltd. The Information
Area of Xihu Industrial Base, Shilong Town, Dongguan, Guangdong Province 523325, P. R. China
- Guangdong
Raynovent Biotech Co., Ltd., Room 1701-1705, Main Building of Rongyi Tower, No. 5, Xinxi Road,
SongShan Lake Hi-tech Industrial Development Zone, Dongguan, Guangdong Province 523808, P. R. China
| | - Xiaoxin Chen
- R&D
Center, Guangdong Zhongsheng Pharmaceutical
Co., Ltd. The Information
Area of Xihu Industrial Base, Shilong Town, Dongguan, Guangdong Province 523325, P. R. China
- Guangdong
Raynovent Biotech Co., Ltd., Room 1701-1705, Main Building of Rongyi Tower, No. 5, Xinxi Road,
SongShan Lake Hi-tech Industrial Development Zone, Dongguan, Guangdong Province 523808, P. R. China
| | - Chaofeng Long
- R&D
Center, Guangdong Zhongsheng Pharmaceutical
Co., Ltd. The Information
Area of Xihu Industrial Base, Shilong Town, Dongguan, Guangdong Province 523325, P. R. China
- Guangdong
Raynovent Biotech Co., Ltd., Room 1701-1705, Main Building of Rongyi Tower, No. 5, Xinxi Road,
SongShan Lake Hi-tech Industrial Development Zone, Dongguan, Guangdong Province 523808, P. R. China
| | - Jian Li
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Shuhui Chen
- WuXi AppTec (Shanghai)
Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| |
Collapse
|
10
|
Ammazzalorso A, Maccallini C, Amoia P, Amoroso R. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem 2019; 173:261-273. [DOI: 10.1016/j.ejmech.2019.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023]
|
11
|
Fantacuzzi M, De Filippis B, Amoroso R, Giampietro L. PPAR Ligands Containing Stilbene Scaffold. Mini Rev Med Chem 2019; 19:1599-1610. [PMID: 31161987 DOI: 10.2174/1389557519666190603085026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/26/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors which belong to the ligand-activated nuclear receptor superfamily. They are ubiquitously expressed throughout the body. So far, three major subtypes have been identified, PPARα, PPARβ/δ and PPARγ. They are crucial for lipid and glucose metabolism and are also involved in the regulation of several types of tumors, inflammation, cardiovascular diseases and infertility. The importance of these transcription factors in physiology and pathophysiology has been largely investigated. Synthetic PPAR ligands are widely used in the treatment of dyslipidemia (e.g. fibrates - PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones - PPARγ agonists) while a new generation of dual agonists reveals hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action. Many natural ligands, including polyphenolic compounds, influence the expression of these receptors. They have several health-promoting properties, including antioxidant, anti-inflammatory, and antineoplastic activities. Resveratrol, a stilbene polyphenol, is a biological active modulator of several signaling proteins, including PPARs. Given the enormous pharmacological potential of resveratrol, stilbene-based medicinal chemistry had a rapid increase covering various areas of research. The present review discusses ligands of PPARs that contain stilbene scaffold and summarises the different types of compounds on the basis of chemical structure.
Collapse
Affiliation(s)
| | - Barbara De Filippis
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
2-Phenyl-8-(1-phenylallyl)-chromenone compounds have a pan-PPAR modulator pharmacophore. Bioorg Med Chem 2019; 27:2948-2958. [PMID: 31128991 DOI: 10.1016/j.bmc.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022]
Abstract
Adiponectin is an adipocytokine with insulin-sensitizing, anti-atherogenic, and anti-inflammatory properties. Adiponectin secretion-inducing compounds have therapeutic potential in a variety of metabolic diseases. Phenotypic screening led to the discovery that 5,7-dihydroxy-8-(1-(4-hydroxy-3-methoxyphenyl)allyl)-2-phenyl-4H-chromen-4-one (compound 1) had adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Compound 1 was originally reported to be an anti-cancer chemical isolated from natural honeybee propolis, and its adiponectin secretion-inducing activity was found in non-cytotoxic concentrations. In a target identification study, compound 1 and its potent synthetic derivative compound 5 were shown to be novel pan-peroxisome proliferator-activator receptor (PPAR) modulators. Molecular docking models with PPARs have indicated that the binding modes of chromenone compounds preferentially interacted with the hydrophobic ligand binding pocket of PPARs. In addition, chromenone compounds have been shown to result in different phenotypic outcomes in the transcriptional regulation of lipid metabolic enzymes than those of selective PPAR mono-agonists for PPARα, PPARγ, and PPARδ. In line with the pharmacology of adiponectin and PPAR pan-modulators, compounds 1 and 5 may have diverse therapeutic potentials to treat cancer and metabolic diseases.
Collapse
|
13
|
Development of Fibrates as Important Scaffolds in Medicinal Chemistry. ChemMedChem 2019; 14:1051-1066. [DOI: 10.1002/cmdc.201900128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/13/2022]
|
14
|
|
15
|
Giampietro L, Laghezza A, Cerchia C, Florio R, Recinella L, Capone F, Ammazzalorso A, Bruno I, De Filippis B, Fantacuzzi M, Ferrante C, Maccallini C, Tortorella P, Verginelli F, Brunetti L, Cama A, Amoroso R, Loiodice F, Lavecchia A. Novel Phenyldiazenyl Fibrate Analogues as PPAR α/γ/δ Pan-Agonists for the Amelioration of Metabolic Syndrome. ACS Med Chem Lett 2019; 10:545-551. [PMID: 30996794 DOI: 10.1021/acsmedchemlett.8b00574] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/25/2019] [Indexed: 01/10/2023] Open
Abstract
The development of PPARα/γ dual or PPARα/γ/δ pan-agonists could represent an efficacious approach for a simultaneous pharmacological intervention on carbohydrate and lipid metabolism. Two series of new phenyldiazenyl fibrate derivatives of GL479, a previously reported PPARα/γ dual agonist, were synthesized and tested. Compound 12a was identified as a PPAR pan-agonist with moderate and balanced activity on the three PPAR isoforms (α, γ, δ). Moreover, docking experiments showed that 12a adopts a different binding mode in PPARγ compared to PPARα or PPARδ, providing a structural basis for further structure-guided design of PPAR pan-agonists. The beneficial effects of 12a were evaluated both in vitro, on the expression of PPAR target key metabolic genes, and ex vivo in two rat tissue inflammatory models. The obtained results allow considering this compound as an interesting lead for the development of a new class of PPAR pan-agonists endowed with an activation profile exploitable for therapy of metabolic syndrome.
Collapse
Affiliation(s)
- Letizia Giampietro
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Drug Science, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126 Bari, Italy
| | - Carmen Cerchia
- Department of Pharmacy, “Drug Discovery” Laboratory, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Rosalba Florio
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
- Center of Aging Science and Translational Medicine (CeSI-MeT), University of Chieti “G. d’Annunzio”, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Fabio Capone
- Department of Pharmacy, “Drug Discovery” Laboratory, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Isabella Bruno
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Drug Science, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126 Bari, Italy
| | - Fabio Verginelli
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
- Center of Aging Science and Translational Medicine (CeSI-MeT), University of Chieti “G. d’Annunzio”, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
- Center of Aging Science and Translational Medicine (CeSI-MeT), University of Chieti “G. d’Annunzio”, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti “G. d.Annunzio”, Via Dei Vestini, 31, 66100 Chieti, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126 Bari, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery” Laboratory, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Identification of novel PPARα/γ dual agonists by pharmacophore screening, docking analysis, ADMET prediction and molecular dynamics simulations. Comput Biol Chem 2019; 78:178-189. [DOI: 10.1016/j.compbiolchem.2018.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 01/05/2023]
|
17
|
Silva JC, de Oliveira EM, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta IR, de Las Heras B, Boscá L, Rudnicki M, Abdalla DSP. GQ-11: A new PPAR agonist improves obesity-induced metabolic alterations in LDLr -/- mice. Int J Obes (Lond) 2018; 42:1062-1072. [PMID: 29453462 DOI: 10.1038/s41366-018-0011-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity and insulin resistance/diabetes are important risk factors for cardiovascular diseases and demand safe and efficacious therapeutics. OBJECTIVE To assess the effects of a new thiazolidine compound-GQ-11-on obesity and insulin resistance induced by a diabetogenic diet in LDL receptor-deficient (LDLr-/-) mice. METHODS Molecular docking simulations of GQ-11, PPARα and PPARγ structures were performed. Male C57BL/6J LDLr-/- mice fed a diabetogenic diet for 24 weeks were treated with vehicle, GQ-11 or pioglitazone or (20 mg/kg/day) for 28 days by oral gavage. Glucose tolerance test, insulin, HOMA-IR, adipokines (leptin, adiponectin) and the lipid profile were assessed after treatment. Adipose tissue was analysed by X-ray analysis and morphometry; gene and protein expression were evaluated by real-time PCR and western blot, respectively. RESULTS GQ-11 showed partial agonism to PPARγ and PPARα. In vivo, treatment with GQ-11 ameliorated insulin sensitivity and did not modify subcutaneous adipose tissue and body weight gain. In addition, GQ-11 restored adipokine imbalance induced by a diabetogenic diet and enhanced Glut-4 expression in the adipose tissue. Improved insulin sensitivity was also associated with lower levels of MCP-1 and higher levels of IL-10. Furthermore, GQ-11 reduced triglycerides and VLDL cholesterol and increased HDL-cholesterol by upregulation of Apoa1 and Abca1 gene expression in the liver. CONCLUSION GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.
Collapse
Affiliation(s)
- Jacqueline C Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Edson M de Oliveira
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Walter M Turato
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo H G Trossini
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinícius G Maltarollo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marina G R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ivan R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Beatriz de Las Heras
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Chen C, Zhou S, Meng Q. A molecular docking study of Rhizoma Atractylodis and Rhizoma Atractylodis Macrocephalae herbal pair with respect to type 2 diabetes mellitus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Sci Rep 2017; 7:16837. [PMID: 29203903 PMCID: PMC5715099 DOI: 10.1038/s41598-017-17082-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
Peroxisome proliferator-activator receptor (PPAR) γ is a nuclear hormone receptor that regulates glucose homeostasis, lipid metabolism, and adipocyte function. PPARγ is a target for thiazolidinedione (TZD) class of drugs which are widely used for the treatment of type 2 diabetes. Recently, lobeglitazone was developed as a highly effective TZD with reduced side effects by Chong Kun Dang Pharmaceuticals. To identify the structural determinants for the high potency of lobeglitazone as a PPARγ agonist, we determined the crystal structures of the PPARγ ligand binding domain (LBD) in complex with lobeglitazone and pioglitazone at 1.7 and 1.8 Å resolutions, respectively. Comparison of ligand-bound PPARγ structures revealed that the binding modes of TZDs are well conserved. The TZD head group forms hydrogen bonds with the polar residues in the AF-2 pocket and helix 12, stabilizing the active conformation of the LBD. The unique p-methoxyphenoxy group of lobeglitazone makes additional hydrophobic contacts with the Ω-pocket. Docking analysis using the structures of TZD-bound PPARγ suggested that lobeglitazone displays 12 times higher affinity to PPARγ compared to rosiglitazone and pioglitazone. This structural difference correlates with the enhanced affinity and the low effective dose of lobeglitazone compared to the other TZDs.
Collapse
|
20
|
Study of new interactions of glitazone’s stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins. Biochem Pharmacol 2017; 142:168-193. [DOI: 10.1016/j.bcp.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
|
21
|
Bansal T, Chatterjee E, Singh J, Ray A, Kundu B, Thankamani V, Sengupta S, Sarkar S. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J Biol Chem 2017; 292:16440-16462. [PMID: 28821620 DOI: 10.1074/jbc.m117.788299] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac hypertrophy and associated heart fibrosis remain a major cause of death worldwide. Phytochemicals have gained attention as alternative therapeutics for managing cardiovascular diseases. These include the extract from the plant Terminalia arjuna, which is a popular cardioprotectant and may prevent or slow progression of pathological hypertrophy to heart failure. Here, we investigated the mode of action of a principal bioactive T. arjuna compound, arjunolic acid (AA), in ameliorating hemodynamic load-induced cardiac fibrosis and identified its intracellular target. Our data revealed that AA significantly represses collagen expression and improves cardiac function during hypertrophy. We found that AA binds to and stabilizes the ligand-binding domain of peroxisome proliferator-activated receptor α (PPARα) and increases its expression during cardiac hypertrophy. PPARα knockdown during AA treatment in hypertrophy samples, including angiotensin II-treated adult cardiac fibroblasts and renal artery-ligated rat heart, suggests that AA-driven cardioprotection primarily arises from PPARα agonism. Moreover, AA-induced PPARα up-regulation leads to repression of TGF-β signaling, specifically by inhibiting TGF-β-activated kinase1 (TAK1) phosphorylation. We observed that PPARα directly interacts with TAK1, predominantly via PPARα N-terminal transactivation domain (AF-1) thereby masking the TAK1 kinase domain. The AA-induced PPARα-bound TAK1 level thereby shows inverse correlation with the phosphorylation level of TAK1 and subsequent reduction in p38 MAPK and NF-κBp65 activation, ultimately culminating in amelioration of excess collagen synthesis in cardiac hypertrophy. In conclusion, our findings unravel the mechanism of AA action in regressing hypertrophy-associated cardiac fibrosis by assigning a role of AA as a PPARα agonist that inactivates non-canonical TGF-β signaling.
Collapse
Affiliation(s)
- Trisha Bansal
- From the Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal
| | - Emeli Chatterjee
- From the Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal
| | - Jasdeep Singh
- the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016
| | - Arjun Ray
- the Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, and
| | - Bishwajit Kundu
- the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016
| | - V Thankamani
- the Department of Biotechnology, University of Kerala, Thiruvananthapuram 695014, Kerala, India
| | - Shantanu Sengupta
- the Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, and
| | - Sagartirtha Sarkar
- From the Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal,
| |
Collapse
|
22
|
Tang B, Li B, Qian Y, Ao M, Guo K, Fang M, Wu Z. The molecular mechanism of hPPARα activation. RSC Adv 2017. [DOI: 10.1039/c6ra27740c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MD simulations were performed to explore the molecular mechanism of hPPARα activation. 11 key residues favouring binding ligands and the movements of helices and loops playing important roles in inducing the active conformation change of hPPARα were discovered.
Collapse
Affiliation(s)
- Bowen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Yuqin Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| |
Collapse
|
23
|
Egawa D, Itoh T, Akiyama Y, Saito T, Yamamoto K. 17-OxoDHA Is a PPARα/γ Dual Covalent Modifier and Agonist. ACS Chem Biol 2016; 11:2447-55. [PMID: 27337155 DOI: 10.1021/acschembio.6b00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
17-Hydroxy docosahexaenoic acid (17-HDHA) is an oxidized form of docosahexaenoic acid (DHA) and known as a specialized proresolving mediator. We found that a further oxidized product, 17-oxodocosahexaenoic acid (17-oxoDHA), activates peroxisome proliferator-activated receptors γ (PPARγ) and PPARα in transcriptional assays and thus can be classified as an α/γ dual agonist. ESI mass spectroscopy and X-ray crystallographic analysis showed that 17-oxoDHA binds to PPARγ and PPARα covalently, making 17-oxoDHA the first of a novel class of PPAR agonists, the PPARα/γ dual covalent agonist. Furthermore, the covalent binding sites were identified as Cys285 for PPARγ and Cys275 for PPARα.
Collapse
Affiliation(s)
- Daichi Egawa
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yui Akiyama
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoko Saito
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
24
|
Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res 2016; 2016:7614270. [PMID: 27313601 PMCID: PMC4893583 DOI: 10.1155/2016/7614270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
The present review summarizes the current advances in the biochemical and physiological aspects in the treatment of type 2 diabetes mellitus (DM2) with thiazolidinediones (TZDs). DM2 is a metabolic disorder characterized by hyperglycemia, triggering the abnormal activation of physiological pathways such as glucose autooxidation, polyol's pathway, formation of advance glycation end (AGE) products, and glycolysis, leading to the overproduction of reactive oxygen species (ROS) and proinflammatory cytokines, which are responsible for the micro- and macrovascular complications of the disease. The treatment of DM2 has been directed toward the reduction of hyperglycemia using different drugs such as insulin sensitizers, as the case of TZDs, which are able to lower blood glucose levels and circulating triglycerides by binding to the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) as full agonists. When TZDs interact with PPARγ, the receptor regulates the transcription of different genes involved in glucose homeostasis, insulin resistance, and adipogenesis. However, TZDs exhibit some adverse effects such as fluid retention, weight gain, hepatotoxicity, plasma-volume expansion, hemodilution, edema, bone fractures, and congestive heart failure, which limits their use in DM2 patients.
Collapse
|
25
|
Ammazzalorso A, Carrieri A, Verginelli F, Bruno I, Carbonara G, D'Angelo A, De Filippis B, Fantacuzzi M, Florio R, Fracchiolla G, Giampietro L, Giancristofaro A, Maccallini C, Cama A, Amoroso R. Synthesis, in vitro evaluation, and molecular modeling investigation of benzenesulfonimide peroxisome proliferator-activated receptors α antagonists. Eur J Med Chem 2016; 114:191-200. [PMID: 26974385 DOI: 10.1016/j.ejmech.2016.02.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/02/2023]
Abstract
Recent evidences suggest a moderate activation of Peroxisome Proliferator-Activated Receptors (PPARs) could be favorable in metabolic diseases, reducing side effects given from full agonists. PPAR partial agonists and antagonists represent, to date, interesting tools to better elucidate biological processes modulated by these receptors. In this work are reported new benzenesulfonimide compounds able to block PPARα, synthesized and tested by transactivation assays and gene expression analysis. Some of these compounds showed a dose-dependent antagonistic behavior on PPARα, submicromolar potency, different profiles of selectivity versus PPARγ, and a repressive effect on CPT1A expression. Dockings and molecular dynamics on properly selected benzenesulfonimide derivatives furnished fresh insights into the molecular determinant most likely responsible for PPARα antagonism.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy.
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari, Italy
| | - Fabio Verginelli
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy; Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Isabella Bruno
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | | | - Alessandra D'Angelo
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Barbara De Filippis
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Marialuigia Fantacuzzi
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Rosalba Florio
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy; Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | | | - Letizia Giampietro
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Antonella Giancristofaro
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Cristina Maccallini
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy
| | - Alessandro Cama
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy; Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Rosa Amoroso
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università"G. d'Annunzio", Chieti, Italy.
| |
Collapse
|