1
|
Lorenz C, Forsting J, Style RW, Klumpp S, Köster S. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. MATTER 2023; 6:2019-2033. [PMID: 37332398 PMCID: PMC10273143 DOI: 10.1016/j.matt.2023.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
Cell mechanics are determined by an intracellular biopolymer network, including intermediate filaments that are expressed in a cell-type-specific manner. A prominent pair of intermediate filaments are keratin and vimentin, as they are expressed by non-motile and motile cells, respectively. Therefore, the differential expression of these proteins coincides with a change in cellular mechanics and dynamic properties of the cells. This observation raises the question of how the mechanical properties already differ on the single filament level. Here, we use optical tweezers and a computational model to compare the stretching and dissipation behavior of the two filament types. We find that keratin and vimentin filaments behave in opposite ways: keratin filaments elongate but retain their stiffness, whereas vimentin filaments soften but retain their length. This finding is explained by fundamentally different ways to dissipate energy: viscous sliding of subunits within keratin filaments and non-equilibrium α helix unfolding in vimentin filaments.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Pranke IM, Chevalier B, Premchandar A, Baatallah N, Tomaszewski KF, Bitam S, Tondelier D, Golec A, Stolk J, Lukacs GL, Hiemstra PS, Dadlez M, Lomas DA, Irving JA, Delaunay-Moisan A, van Anken E, Hinzpeter A, Sermet-Gaudelus I, Edelman A. Keratin 8 is a scaffolding and regulatory protein of ERAD complexes. Cell Mol Life Sci 2022; 79:503. [PMID: 36045259 DOI: 10.1007/s00018-022-04528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.
Collapse
Affiliation(s)
- Iwona Maria Pranke
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France.
| | - Benoit Chevalier
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Aiswarya Premchandar
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106, Warsaw, Poland
| | - Nesrine Baatallah
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Kamil F Tomaszewski
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Sara Bitam
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Danielle Tondelier
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Anita Golec
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106, Warsaw, Poland
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, WC1E 6JF, UK
| | - James A Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, WC1E 6JF, UK
| | - Agnes Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alexandre Hinzpeter
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France.,Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aleksander Edelman
- Inserm, U1151, CNRS UMR 8253, Université de Paris, 160 rue de Vaugirard, 75015, Paris, France.
| |
Collapse
|
3
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
4
|
Lorenz C, Forsting J, Schepers AV, Kraxner J, Bauch S, Witt H, Klumpp S, Köster S. Lateral Subunit Coupling Determines Intermediate Filament Mechanics. PHYSICAL REVIEW LETTERS 2019; 123:188102. [PMID: 31763918 DOI: 10.1103/physrevlett.123.188102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 05/27/2023]
Abstract
The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Susanne Bauch
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hannes Witt
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammanstraße 2, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 7, 37077 Göttingen
| | - Stefan Klumpp
- Institute for Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Lee SY, Kim S, Lim Y, Yoon HN, Ku NO. Keratins regulate Hsp70-mediated nuclear localization of p38 mitogen-activated protein kinase. J Cell Sci 2019; 132:jcs.229534. [PMID: 31427430 DOI: 10.1242/jcs.229534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Intermediate filament protein keratin 8 (K8) binds to heat shock protein 70 (Hsp70) and p38 MAPK, and is phosphorylated at Ser74 by p38α (MAPK14, hereafter p38). However, a p38 binding site on K8 and the molecular mechanism of K8-p38 interaction related to Hsp70 are unknown. Here, we identify a p38 docking site on K8 (Arg148/149 and Leu159/161) that is highly conserved in other intermediate filaments. A docking-deficient K8 mutation caused increased p38-Hsp70 interaction and enhanced p38 nuclear localization, indicating that the p38 dissociated from mutant K8 makes a complex with Hsp70, which is known as a potential chaperone for p38 nuclear translocation. Comparison of p38 MAPK binding with keratin variants associated with liver disease showed that the K18 I150V variant dramatically reduced binding with p38, which is similar to the effect of the p38 docking-deficient mutation on K8. Because the p38 docking site on K8 (Arg148/149 and Leu159/161) and the K18 Ile150 residue are closely localized in the parallel K8/K18 heterodimer, the K18 I150V mutation might interfere with K8-p38 interaction. These findings show that keratins, functioning as cytoplasmic anchors for p38, modulate p38 nuclear localization and thereby might affect a number of p38-mediated signal transduction pathways.
Collapse
Affiliation(s)
- So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 120-749, Korea
| | - Sujin Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 120-749, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 120-749, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 120-749, Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 120-749, Korea .,Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
6
|
Terral G, Champion T, Debaene F, Colas O, Bourguet M, Wagner-Rousset E, Corvaia N, Beck A, Cianferani S. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs 2017; 9:1317-1326. [PMID: 28933642 DOI: 10.1080/19420862.2017.1380762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.
Collapse
Affiliation(s)
- Guillaume Terral
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Thierry Champion
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - François Debaene
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Olivier Colas
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Maxime Bourguet
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Nathalie Corvaia
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Beck
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Sarah Cianferani
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| |
Collapse
|
7
|
Premchandar A, Kupniewska A, Bonna A, Faure G, Fraczyk T, Roldan A, Hoffmann B, Faria da Cunha M, Herrmann H, Lukacs GL, Edelman A, Dadlez M. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8. Protein Sci 2017; 26:343-354. [PMID: 27870250 DOI: 10.1002/pro.3086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1.
Collapse
Affiliation(s)
| | - Anna Kupniewska
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Arkadiusz Bonna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Grazyna Faure
- Unité Récepteurs-Canaux; Institut Pasteur, CNRS, URA 2182, Paris, F-75015, France
| | - Tomasz Fraczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Ariel Roldan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Paris Cedex 05, 75005, France
| | - Mélanie Faria da Cunha
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Harald Herrmann
- Department of Molecular Genetics, German Cancer Research Center, Heidelberg, D-69120, Germany.,Institute of Neuropathology, University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Aleksander Edelman
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| |
Collapse
|
8
|
Kistowski M, Dębski J, Karczmarski J, Paziewska A, Olędzki J, Mikula M, Ostrowski J, Dadlez M. A Strong Neutrophil Elastase Proteolytic Fingerprint Marks the Carcinoma Tumor Proteome. Mol Cell Proteomics 2016; 16:213-227. [PMID: 27927741 DOI: 10.1074/mcp.m116.058818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 11/12/2016] [Indexed: 12/18/2022] Open
Abstract
Proteolytic cascades are deeply involved in critical stages of cancer progression. During the course of peptide-wise analysis of shotgun proteomic data sets representative of colon adenocarcinoma (AC) and ulcerative colitis (UC), we detected a cancer-specific proteolytic fingerprint composed of a set of numerous protein fragments cleaved C-terminally to V, I, A, T, or C residues, significantly overrepresented in AC. A peptide set linked by a common VIATC cleavage consensus was the only prominent cancer-specific proteolytic fingerprint detected. This sequence consensus indicated neutrophil elastase as a source of the fingerprint. We also found that a large fraction of affected proteins are RNA processing proteins associated with the nuclear fraction and mostly cleaved within their functionally important RNA-binding domains. Thus, we detected a new class of cancer-specific peptides that are possible markers of tumor-infiltrating neutrophil activity, which often correlates with the clinical outcome. Data are available via ProteomeXchange with identifiers: PXD005274 (Data set 1) and PXD004249 (Data set 2). Our results indicate the value of peptide-wise analysis of large global proteomic analysis data sets as opposed to protein-wise analysis, in which outlier differential peptides are usually neglected.
Collapse
Affiliation(s)
- Michał Kistowski
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw
| | - Janusz Dębski
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw
| | - Jakub Karczmarski
- §Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland
| | - Agnieszka Paziewska
- §Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland
| | - Jacek Olędzki
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw
| | - Michał Mikula
- §Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- ¶Department of Gastroenterology Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Michał Dadlez
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw;
| |
Collapse
|
9
|
Premchandar A, Mücke N, Poznański J, Wedig T, Kaus-Drobek M, Herrmann H, Dadlez M. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J Biol Chem 2016; 291:24931-24950. [PMID: 27694444 PMCID: PMC5122765 DOI: 10.1074/jbc.m116.748145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.
Collapse
Affiliation(s)
- Aiswarya Premchandar
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Jarosław Poznański
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Magdalena Kaus-Drobek
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, and
- the Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Michał Dadlez
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland,
- the Institute of Genetics and Biotechnology, Biology Department, University of Warsaw, Miecznikowa 3, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Faure G, Bakouh N, Lourdel S, Odolczyk N, Premchandar A, Servel N, Hatton A, Ostrowski MK, Xu H, Saul FA, Moquereau C, Bitam S, Pranke I, Planelles G, Teulon J, Herrmann H, Roldan A, Zielenkiewicz P, Dadlez M, Lukacs GL, Sermet-Gaudelus I, Ollero M, Corringer PJ, Edelman A. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis. J Mol Biol 2016; 428:2898-915. [PMID: 27241308 DOI: 10.1016/j.jmb.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/26/2023]
Abstract
Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.
Collapse
Affiliation(s)
- Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France.
| | - Naziha Bakouh
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Stéphane Lourdel
- UPMC Université Paris 06, UMRS 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Norbert Odolczyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Aiswarya Premchandar
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Nathalie Servel
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Aurélie Hatton
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Maciej K Ostrowski
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Haijin Xu
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Frederick A Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - Christelle Moquereau
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Sara Bitam
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Iwona Pranke
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Gabrielle Planelles
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Jacques Teulon
- UPMC Université Paris 06, UMRS 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Harald Herrmann
- Department of Molecular Genetics, German Cancer Research Center, D-69120 Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ariel Roldan
- Department of Physiology, McGill University, Montreal, Canada
| | - Piotr Zielenkiewicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Michal Dadlez
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Mario Ollero
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Aleksander Edelman
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| |
Collapse
|