1
|
Muok AR, Kurniyati K, Cassidy CK, Olsthoorn FA, Ortega DR, Mabrouk AS, Li C, Briegel A. A new class of protein sensor links spirochete pleomorphism, persistence, and chemotaxis. mBio 2023; 14:e0159823. [PMID: 37607060 PMCID: PMC10653840 DOI: 10.1128/mbio.01598-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.
Collapse
Affiliation(s)
- A. R. Muok
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - K. Kurniyati
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - C. K. Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - F. A. Olsthoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - D. R. Ortega
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. Sidi Mabrouk
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - C. Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - A. Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Ortega Á, Krell T. Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions. Comput Struct Biotechnol J 2020; 18:1947-1955. [PMID: 32774789 PMCID: PMC7390727 DOI: 10.1016/j.csbj.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/05/2022] Open
Abstract
Chemosensory pathways represent a major prokaryotic signal transduction mechanism that is based on signal sensing by chemoreceptors. An essential feature of chemosensory pathways is the CheR and CheB mediated control of chemoreceptor methylation causing pathway adaptation. At their C-terminal extension the Tar and Tsr model chemoreceptors contain a pentapeptide that acts as an additional CheR and CheB binding site. The relevance of this pentapeptide is poorly understood since pentapeptide removal from Tar/Tsr causes receptor inactivation, whereas many other chemoreceptors do not require this pentapeptide for correct function. We report here a bioinformatic analysis of pentapeptide containing chemoreceptors. These receptors were detected in 11 bacterial phyla and represent approximately 10% of all chemoreceptors. Pentapeptide containing chemoreceptors are mainly found in Gram-negative bacteria, are of low abundance in Gram-positive species and almost absent from archaea. Almost 50% of TarH (Tar homologue) ligand binding domain containing chemoreceptors possess pentapeptides, whereas chemoreceptor families with other ligand binding domains are devoid of pentapeptides. The abundance of chemoreceptors with C-terminal pentapeptides correlated negatively with the number of chemoreceptor genes per genome. The consensus sequence reveals a negative net charge for many pentapeptides. Pentapeptide containing chemoreceptors are very abundant in the order Enterobacterales, particularly in the families Pectobacterium and Dickeya, where they represent about 50% of the total number. In contrast, bacteria with primarily free living lifestyles have a reduced number of pentapeptides, such as approximately 1% for Pseudomonadales. It is proposed that pentapeptide function is related to mechanisms that permit host interaction.
Collapse
Affiliation(s)
- Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
3
|
Xing SC, Mi JD, Chen JY, Xiao L, Wu YB, Liang JB, Zhang LH, Liao XD. The metabolism and morphology mutation response of probiotic Bacillus coagulans for lead stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133490. [PMID: 31635006 DOI: 10.1016/j.scitotenv.2019.07.296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Lead is among the most common toxic heavy metals and its contamination is of great public concern. Bacillus coagulans is the probiotic which can be considered as the lead absorption sorbent to apply in the lead contaminant water directly or indirectly. A better understanding of the lead resistance and tolerance mechanisms of B. coagulans would help further its development and utilization. Wild-type Bacillus coagulans strain R11 isolated from a lead mine, was acclimated to lead-containing culture media over 85 passages, producing two lead-adapted strains, and the two strains shown higher lead intracellular accumulation ability (38.56-fold and 19.36-fold) and reducing ability (6.94-fold and 7.44-fold) than that of wild type. Whole genome sequencing, genome resequencing, and comparative transcriptomics identified lead resistance and tolerance process significantly involved in these genes which regulated glutathione and sulfur metabolism, flagellar formation and metal ion transport pathways in the lead-adapted strains, elucidating the relationships among the mechanisms regulating lead deposition, deoxidation, and motility and the evolved tolerance to lead. In addition, the B. coagulans mutants tended to form flagellar and chemotaxis systems to avoid lead ions rather than export it, suggesting a new resistance strategy. Based on the present results, the optimum lead concentration in environment should be considered when employed B. coagulans as the lead sorbent, due to the bacteria growth ability decreased in high lead concentration and physiology morphology changed could reduce the lead removal effectiveness. The identified deoxidization and compound secretion genes and pathways in B. coagulans R11 also are potential genetic engineering candidates for synthesizing glutathione, cysteine, methionine, and selenocompounds.
Collapse
Affiliation(s)
- Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Jian-Dui Mi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Lei Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Yin-Bao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Juan Boo Liang
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical AgroBioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
4
|
Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, Ferri S, Tsugawa W, Kamitori S, Sode K. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallogr D Struct Biol 2019; 75:841-851. [PMID: 31478907 PMCID: PMC6719666 DOI: 10.1107/s2059798319010878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe-4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Katsuhiro Kojima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masaki Shiota
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Stefano Ferri
- Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Methyl-accepting chemotaxis like Rv3499c (Mce4A) protein in Mycobacterium tuberculosis H37Rv mediates cholesterol-dependent survival. Tuberculosis (Edinb) 2018; 109:52-60. [PMID: 29559121 DOI: 10.1016/j.tube.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 12/28/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Cholesterol, an essential cellular component in macrophages, is exploited for entry and long-term survival of Mycobacterium inside the host. Cholesterol-deficient macrophages can restrict the cholesterol-dependent entry of Mycobacterium. Rv3499c protein in Mycobacterium has high binding affinity for cholesterol. Rv3499c gene is a part of mce4 operon which is reported to act as cholesterol transport system in mycobacteria. Earlier we reported Rv3499c protein to localise on cell wall and facilitate entry of Mycobacterium inside macrophages. Here we performed fold recognition and multiple sequence alignment to find similarity with methyl-accepting chemotaxis protein (MCP). MCP allows detection of level of nutrient in the medium, which in this case is cholesterol. We showed Rv3499c protein expression is important for host cholesterol utilization by Mycobacterium for its survival. Infected female balb/c mice presented increased CFU of Rv3499c overexpressing M. tuberculosis H37Rv marked with early disease conditions and increased lung pathology. Thus, findings suggest specific domain of MCP of Rv3499c help in regulation of downstream PDIM synthesis pathways for ligand utilization by M. tuberculosis H37Rv.
Collapse
|
6
|
Yan XF, Xin L, Yen JT, Zeng Y, Jin S, Cheang QW, Fong RACY, Chiam KH, Liang ZX, Gao YG. Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein. J Biol Chem 2017; 293:100-111. [PMID: 29146598 DOI: 10.1074/jbc.m117.815704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/10/2017] [Indexed: 01/09/2023] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein. However, the molecular mechanism for PilZ protein-mediated protein regulation is unclear. Here, we present the structure of the PilZ adaptor protein MapZ cocrystallized in complex with c-di-GMP and its protein target CheR1, a chemotaxis-regulating methyltransferase in Pseudomonas aeruginosa This cocrystal structure, together with the structure of free CheR1, revealed that the binding of c-di-GMP induces dramatic structural changes in MapZ that are crucial for CheR1 binding. Importantly, we found that restructuring and repositioning of two C-terminal helices enable MapZ to disrupt the CheR1 active site by dislodging a structural domain. The crystallographic observations are reinforced by protein-protein binding and single cell-based flagellar motor switching analyses. Our studies further suggest that the regulation of chemotaxis by c-di-GMP through MapZ orthologs/homologs is widespread in proteobacteria and that the use of allosterically regulated C-terminal motifs could be a common mechanism for PilZ adaptor proteins. Together, the findings provide detailed structural insights into how c-di-GMP controls the activity of an enzyme target indirectly through a PilZ adaptor protein.
Collapse
Affiliation(s)
- Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 639798, Singapore
| | - Lingyi Xin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jackie Tan Yen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 639798, Singapore
| | - Yukai Zeng
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, Number 07-01, S138671 Singapore, Singapore
| | - Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 639798, Singapore
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Keng-Hwee Chiam
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, Number 07-01, S138671 Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 639798, Singapore; Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
7
|
Zhu Y, Yuan Z, Gu L. Structural basis for the regulation of chemotaxis by MapZ in the presence of c-di-GMP. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:683-691. [PMID: 28777083 DOI: 10.1107/s2059798317009998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022]
Abstract
The bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP) mediates multiple aspects of bacterial physiology through binding to various effectors. In some cases, these effectors are single-domain proteins which only contain a PilZ domain. It remains largely unknown how single-domain PilZ proteins function and regulate their downstream targets. Recently, a single-domain PilZ protein, MapZ (PA4608), was identified to inhibit the activity of the methyltransferase CheR1. Here, crystal structures of the C-terminal domain of CheR1 containing SAH and of CheR1 in complex with c-di-GMP-bound MapZ are reported. It was observed that the binding site of MapZ in CheR1 partially overlaps with the SAH/SAM-binding pocket. Consequently, binding of MapZ blocks SAH/SAM binding. This provides direct structural evidence on the mechanism of inhibition of CheR1 by MapZ in the presence of c-di-GMP.
Collapse
Affiliation(s)
- Yingxiao Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|