1
|
Wu B, Chen X, Hu J, Wang ZY, Wang Y, Xu DY, Guo HB, Shao CW, Zhou LQ, Sun XJ, Yu T, Wang XM, Zheng YX, Fan GY, Liu ZH. Combined ATAC-seq, RNA-seq, and GWAS analysis reveals glycogen metabolism regulatory network in Jinjiang oyster ( Crassostrea ariakensis). Zool Res 2024; 45:201-214. [PMID: 38199974 PMCID: PMC10839670 DOI: 10.24272/j.issn.2095-8137.2023.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/08/2023] [Indexed: 01/12/2024] Open
Abstract
Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.
Collapse
Affiliation(s)
- Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Zhen-Yuan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Da-You Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Hao-Bing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Chang-Wei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Li-Qing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Xiu-Jun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Xiao-Mei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Yan-Xin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Guang-Yi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
- State Key Laboratory of Agricultural Genomics, BGI- Shenzhen, Shenzhen, Guangdong 518083, China. E-mail:
| | - Zhi-Hong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China. E-mail:
| |
Collapse
|
2
|
Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis 2023; 14:702. [PMID: 37891184 PMCID: PMC10611805 DOI: 10.1038/s41419-023-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
Collapse
Affiliation(s)
- Bruno F Santos
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Centro Hospitalar Universitário do Algarve (CHUA). Rua Leão Penedo, 8000-386, Faro, Portugal
| | - Inês Grenho
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Martel
- Center for Health Technology and Services Research (CINTESIS)@RISE, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Ibrahim MT, Lee J, Tao P. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Mol Divers 2023; 27:1661-1674. [PMID: 36048303 PMCID: PMC9975119 DOI: 10.1007/s11030-022-10519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 plays an important role in the initiation and maintenance of the epithelial-mesenchymal transition (EMT) process, which is essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
4
|
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 2022; 43:1070-1084. [PMID: 36280450 DOI: 10.1016/j.tips.2022.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Forkhead box (FOX)O proteins are transcription factors (TFs) with four members in mammals designated FOXO1, FOXO3, FOXO4, and FOXO6. FOXO TFs play a pivotal role in the cellular adaptation to diverse stress conditions. FOXO proteins act as context-dependent tumor suppressors and their dysregulation has been implicated in several age-related diseases. FOXO3 has been established as a major gene for human longevity. Accordingly, FOXO proteins have emerged as potential targets for the therapeutic development of drugs and geroprotectors. In this review, we provide an overview of the most recent advances in our understanding of FOXO regulation and function in various pathological conditions. We discuss strategies targeting FOXOs directly or by the modulation of upstream regulators, shedding light on the most promising intervention points. We also reveal the most relevant clinical indications and discuss the potential, trends, and challenges of modulating FOXO activity for therapeutic purposes.
Collapse
Affiliation(s)
- Alba Orea-Soufi
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029-Madrid, Spain.
| |
Collapse
|
5
|
Spreitzer E, Alderson TR, Bourgeois B, Eggenreich L, Habacher H, Brahmersdorfer G, Pritišanac I, Sánchez-Murcia PA, Madl T. FOXO transcription factors differ in their dynamics and intra/intermolecular interactions. Curr Res Struct Biol 2022; 4:118-133. [PMID: 35573459 PMCID: PMC9097636 DOI: 10.1016/j.crstbi.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - T. Reid Alderson
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Loretta Eggenreich
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hermann Habacher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Greta Brahmersdorfer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Iva Pritišanac
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pedro A. Sánchez-Murcia
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Corresponding author. Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
6
|
FOXO1 forkhead domain mutants in B-cell lymphoma lack transcriptional activity. Sci Rep 2022; 12:1309. [PMID: 35079069 PMCID: PMC8789783 DOI: 10.1038/s41598-022-05334-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic point mutations of the FOXO1 transcription factor were reported in non-Hodgkin lymphoma including diffuse large B-cell lymphoma, follicular lymphoma and Burkitt lymphoma. These alterations were associated with a poor prognosis and resistance to therapy. Nearly all amino acid substitutions are localized in two major clusters, affecting either the N-terminal region (Nt mutations) or the forkhead DNA-binding domain (DBD mutations). While recent studies have focused on Nt mutations, we characterized FOXO1 DBD mutants. We analyzed their transcriptional activity, DNA binding, phosphorylation and protein–protein interaction. The majority of DBD mutants showed a decrease in activity and DNA binding, while preserving AKT phosphorylation and interaction with the cytoplasmic ATG7 protein. In addition, we investigated the importance of conserved residues of the α-helix 3 of the DBD. Amino acids I213, R214, H215 and L217 appeared to be crucial for FOXO1 activity. Our data underlined the key role of multiple amino-acid residues of the forkhead domain in FOXO1 transcriptional activity and revealed a new type of FOXO1 loss-of-function mutations in B-cell lymphoma.
Collapse
|
7
|
Dai S, Qu L, Li J, Chen Y. Toward a mechanistic understanding of DNA binding by forkhead transcription factors and its perturbation by pathogenic mutations. Nucleic Acids Res 2021; 49:10235-10249. [PMID: 34551426 PMCID: PMC8501956 DOI: 10.1093/nar/gkab807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Forkhead box (FOX) proteins are an evolutionarily conserved family of transcription factors that play numerous regulatory roles in eukaryotes during developmental and adult life. Dysfunction of FOX proteins has been implicated in a variety of human diseases, including cancer, neurodevelopment disorders and genetic diseases. The FOX family members share a highly conserved DNA-binding domain (DBD), which is essential for DNA recognition, binding and function. Since the first FOX structure was resolved in 1993, >30 FOX structures have been reported to date. It is clear now that the structure and DNA recognition mechanisms vary among FOX members; however, a systematic review on this aspect is lacking. In this manuscript, we present an overview of the mechanisms by which FOX transcription factors bind DNA, including protein structures, DNA binding properties and disease-causing mutations. This review should enable a better understanding of FOX family transcription factors for basic researchers and clinicians.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Linzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Tang Y, Jiang L, Zhao X, Hu D, Zhao G, Luo S, Du X, Tang W. FOXO1 inhibits prostate cancer cell proliferation via suppressing E2F1 activated NPRL2 expression. Cell Biol Int 2021; 45:2510-2520. [PMID: 34459063 DOI: 10.1002/cbin.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/11/2022]
Abstract
Previous studies in our lab suggest that nitrogen permease regulator 2-like (NPRL2) upregulation in prostate cancer is associated with malignant behavior and poor prognosis. However, the underlying mechanisms of NPRL2 dysregulation remain poorly understood. This study aimed to explore the transcription factors (TFs) contributing to NPRL2 dysregulation in prostate cancer. Potential TFs were identified using prostate tissue/cell-specific chromatin immunoprecipitation (ChIP)-seq data collected in the Cistrome Data Browser and Signaling Pathways Project. Dual-luciferase assay and ChIP-qPCR assay were conducted to assess the binding and activating effect of TFs on the gene promoter. Cell Counting Kit-8 and colony formation assays were performed to assess cell proliferation. Results showed that E2F1 is a TF that bound to the NPRL2 promoter and activated its transcription. NPRL2 inhibition significantly alleviated E2F1 enhanced cell proliferation. Kaplan-Meier survival analysis indicated that E2F1 upregulation was associated with unfavorable progression-free survival and disease-specific survival. FOXO1 interacted and E2F1 in both PC3 and LNCaP cells and weakened the binding of E2F1 to the NPRL2 promoter. Functionally, FOXO1 overexpression significantly slowed the proliferation of PC3 and LNCaP cells and also decreased E2F1 enhanced cell proliferation. In summary, this study revealed a novel FOXO1/E2F1-NPRL2 regulatory axis in prostate cancer. E2F1 binds to the NPRL2 promoter and activates its transcription, while FOXO1 interacts with E2F1 and weakens its transcriptional activating effects. These findings help expand our understanding of the prostate cancer etiology and suggest that the FOXO1/E2F1-NPRL2 signaling axis might be a potential target.
Collapse
Affiliation(s)
- Yu Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guozhi Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Reis LM, Sorokina EA, Dudakova L, Moravikova J, Skalicka P, Malinka F, Seese SE, Thompson S, Bardakjian T, Capasso J, Allen W, Glaser T, Levin AV, Schneider A, Khan A, Liskova P, Semina EV. Comprehensive phenotypic and functional analysis of dominant and recessive FOXE3 alleles in ocular developmental disorders. Hum Mol Genet 2021; 30:1591-1606. [PMID: 34046667 PMCID: PMC8369840 DOI: 10.1093/hmg/ddab142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The forkhead transcription factor FOXE3 is critical for vertebrate eye development. Recessive and dominant variants cause human ocular disease but the full range of phenotypes and mechanisms of action for the two classes of variants are unknown. We identified FOXE3 variants in individuals with congenital eye malformations and carried out in vitro functional analysis on selected alleles. Sixteen new recessive and dominant families, including six novel variants, were identified. Analysis of new and previously reported genetic and clinical data demonstrated a broad phenotypic range with an overlap between recessive and dominant disease. Most families with recessive alleles, composed of truncating and forkhead-domain missense variants, had severe corneal opacity (90%; sclerocornea in 47%), aphakia (83%) and microphthalmia (80%), but some had milder features including isolated cataract. The phenotype was most variable for recessive missense variants, suggesting that the functional consequences may be highly dependent on the type of amino acid substitution and its position. When assessed, aniridia or iris hypoplasia were noted in 89% and optic nerve anomalies in 60% of recessive cases, indicating that these defects are also common and may be underrecognized. In dominant pedigrees, caused by extension variants, normal eye size (96%), cataracts (99%) and variable anterior segment anomalies were seen in most, but some individuals had microphthalmia, aphakia or sclerocornea, more typical of recessive disease. Functional studies identified variable effects on the protein stability, DNA binding, nuclear localization and transcriptional activity for recessive FOXE3 variants, whereas dominant alleles showed severe impairment in all areas and dominant-negative characteristics.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Lubica Dudakova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Moravikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Frantisek Malinka
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Sarah E Seese
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Tanya Bardakjian
- Department of Pediatrics, Albert Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Jenina Capasso
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, NY 14534 USA
| | - William Allen
- Fullerton Genetics Center, Mission Hospitals, HCA, Asheville, NC, 28803 USA
| | - Tom Glaser
- Cell Biology and Human Anatomy Department, UC-Davis School of Medicine, Davis, CA 95616, USA
| | - Alex V Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, NY 14534 USA
| | - Adele Schneider
- Department of Pediatrics, Albert Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Ayesha Khan
- Pediatric Ophthalmology & Strabismus Unit, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan.,Consultant Pediatric Ophthalmologist, Al Jalila Children's Specialty Hospital, United Arab Emirates
| | - Petra Liskova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.,Departments of Ophthalmology and Cell Biology, Neurobiology and Anatomy at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Li J, Dai S, Chen X, Liang X, Qu L, Jiang L, Guo M, Zhou Z, Wei H, Zhang H, Chen Z, Chen L, Chen Y. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res 2021; 49:3573-3583. [PMID: 33577686 PMCID: PMC8034652 DOI: 10.1093/nar/gkab086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Forkhead transcription factors bind a canonical consensus DNA motif, RYAAAYA (R = A/G, Y = C/T), as a monomer. However, the molecular mechanisms by which forkhead transcription factors bind DNA as a dimer are not well understood. In this study, we show that FOXO1 recognizes a palindromic DNA element DIV2, and mediates transcriptional regulation. The crystal structure of FOXO1/DIV2 reveals that the FOXO1 DNA binding domain (DBD) binds the DIV2 site as a homodimer. The wing1 region of FOXO1 mediates the dimerization, which enhances FOXO1 DNA binding affinity and complex stability. Further biochemical assays show that FOXO3, FOXM1 and FOXI1 also bind the DIV2 site as homodimer, while FOXC2 can only bind this site as a monomer. Our structural, biochemical and bioinformatics analyses not only provide a novel mechanism by which FOXO1 binds DNA as a homodimer, but also shed light on the target selection of forkhead transcription factors.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhan Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Kapetanou M, Nespital T, Tain LS, Pahl A, Partridge L, Gonos ES. FoxO1 Is a Novel Regulator of 20S Proteasome Subunits Expression and Activity. Front Cell Dev Biol 2021; 9:625715. [PMID: 33634126 PMCID: PMC7901890 DOI: 10.3389/fcell.2021.625715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Proteostasis collapses during aging resulting, among other things, in the accumulation of damaged and aggregated proteins. The proteasome is the main cellular proteolytic system and plays a fundamental role in the maintenance of protein homeostasis. Our previous work has demonstrated that senescence and aging are related to a decline in proteasome content and activities, while its activation extends lifespan in vitro and in vivo in various species. However, the mechanisms underlying this age-related decline of proteasome function and the down-regulation in expression of its subunits remain largely unclear. Here, we demonstrate that the Forkhead box-O1 (FoxO1) transcription factor directly regulates the expression of a 20S proteasome catalytic subunit and, hence, proteasome activity. Specifically, we demonstrate that knockout of FoxO1, but not of FoxO3, in mice severely impairs proteasome activity in several tissues, while depletion of IRS1 enhances proteasome function. Importantly, we show that FoxO1 directly binds on the promoter region of the rate-limiting catalytic β5 proteasome subunit to regulate its expression. In summary, this study reveals the direct role of FoxO factors in the regulation of proteasome function and provides new insight into how FoxOs affect proteostasis and, in turn, longevity.
Collapse
Affiliation(s)
- Marianna Kapetanou
- Laboratory of Molecular and Cellular Aging, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Tobias Nespital
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luke S Tain
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andre Pahl
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Efstathios S Gonos
- Laboratory of Molecular and Cellular Aging, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
12
|
Vyse TJ, Cunninghame Graham DS. Trans-Ancestral Fine-Mapping and Epigenetic Annotation as Tools to Delineate Functionally Relevant Risk Alleles at IKZF1 and IKZF3 in Systemic Lupus Erythematosus. Int J Mol Sci 2020; 21:ijms21218383. [PMID: 33182226 PMCID: PMC7664943 DOI: 10.3390/ijms21218383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Prioritizing tag-SNPs carried on extended risk haplotypes at susceptibility loci for common disease is a challenge. Methods: We utilized trans-ancestral exclusion mapping to reduce risk haplotypes at IKZF1 and IKZF3 identified in multiple ancestries from SLE GWAS and ImmunoChip datasets. We characterized functional annotation data across each risk haplotype from publicly available datasets including ENCODE, RoadMap Consortium, PC Hi-C data from 3D genome browser, NESDR NTR conditional eQTL database, GeneCards Genehancers and TF (transcription factor) binding sites from Haploregv4. Results: We refined the 60 kb associated haplotype upstream of IKZF1 to just 12 tag-SNPs tagging a 47.7 kb core risk haplotype. There was preferential enrichment of DNAse I hypersensitivity and H3K27ac modification across the 3′ end of the risk haplotype, with four tag-SNPs sharing allele-specific TF binding sites with promoter variants, which are eQTLs for IKZF1 in whole blood. At IKZF3, we refined a core risk haplotype of 101 kb (27 tag-SNPs) from an initial extended haplotype of 194 kb (282 tag-SNPs), which had widespread DNAse I hypersensitivity, H3K27ac modification and multiple allele-specific TF binding sites. Dimerization of Fox family TFs bound at the 3′ and promoter of IKZF3 may stabilize chromatin looping across the locus. Conclusions: We combined trans-ancestral exclusion mapping and epigenetic annotation to identify variants at both IKZF1 and IKZF3 with the highest likelihood of biological relevance. The approach will be of strong interest to other complex trait geneticists seeking to attribute biological relevance to risk alleles on extended risk haplotypes in their disease of interest.
Collapse
|
13
|
Schmitt-Ney M. The FOXO's Advantages of Being a Family: Considerations on Function and Evolution. Cells 2020; 9:E787. [PMID: 32214027 PMCID: PMC7140813 DOI: 10.3390/cells9030787] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nematode Caenorhabditis elegans possesses a unique (with various isoforms) FOXO transcription factor DAF-16, which is notorious for its role in aging and its regulation by the insulin-PI3K-AKT pathway. In humans, five genes (including a protein-coding pseudogene) encode for FOXO transcription factors that are targeted by the PI3K-AKT axis, such as in C. elegans. This common regulation and highly conserved DNA-binding domain are the pillars of this family. In this review, I will discuss the possible meaning of possessing a group of very similar proteins and how it can generate additional functionality to more complex organisms. I frame this discussion in relation to the much larger super family of Forkhead proteins to which they belong. FOXO members are very often co-expressed in the same cell type. The overlap of function and expression creates a certain redundancy that might be a safeguard against the accidental loss of FOXO function, which could otherwise lead to disease, particularly, cancer. This is one of the points that will be examined in this "family affair" report.
Collapse
Affiliation(s)
- Michel Schmitt-Ney
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
14
|
Irungbam K, Churin Y, Matono T, Weglage J, Ocker M, Glebe D, Hardt M, Koeppel A, Roderfeld M, Roeb E. Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2. J Transl Med 2020; 100:454-465. [PMID: 31570772 PMCID: PMC7044114 DOI: 10.1038/s41374-019-0327-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid (EC) system has been implicated in the pathogenesis of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). With the current study we aimed to verify the modulatory effect of endocannabinoid receptor 1 (CB1)-signaling on perilipin 2 (PLIN2)-mediated lipophagy. Here, we demonstrate that a global knockout of the cannabinoid receptor 1 gene (CB1-/-) reduced the expression of the lipid droplet binding protein PLIN2 in the livers of CB1-/- and hepatitis B surface protein (HBs)-transgenic mice, which spontaneously develop hepatic steatosis. In addition, the pharmacologic activation and antagonization of CB1 in cell culture also caused an induction or reduction of PLIN2, respectively. The decreased PLIN2 expression was associated with suppressed lipogenesis and triglyceride (TG) synthesis and enhanced autophagy as shown by increased colocalization of LC3B with lysosomal-associated membrane protein 1 (LAMP1) in HBs/CB1-/- mice. The induction of autophagy was further supported by the increased expression of LAMP1 in CB1-/- and HBs/CB1-/- mice. LAMP1 and PLIN2 were co-localized in HBs/CB1-/- indicating autophagy of cytoplasmic lipid droplets (LDs) i.e., lipophagy. Lipolysis of lipid droplets was additionally indicated by elevated expression of lysosomal acid lipase. In conclusion, these results suggest that loss of CB1 signaling leads to reduced PLIN2 abundance, which triggers lipophagy. Our new findings about the association between CB1 signaling and PLIN2 may stimulate translational studies analyzing new diagnostic and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Karuna Irungbam
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Yuri Churin
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Tomomitsu Matono
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Jakob Weglage
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Matthias Ocker
- 0000 0004 1936 9756grid.10253.35Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany ,0000 0001 2218 4662grid.6363.0Present Address: Department of Gastroenterology CBF, Translational Medicine Oncology, Charité University Medicine Berlin and Bayer AG, Experimental Medicine Oncology, Berlin, Germany
| | - Dieter Glebe
- 0000 0001 2165 8627grid.8664.cInstitute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig-University, Giessen, Germany
| | - Martin Hardt
- 0000 0001 2165 8627grid.8664.cCentral Biotechnical Facility, Justus-Liebig-University, Giessen, Germany
| | - Alica Koeppel
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Martin Roderfeld
- 0000 0001 2165 8627grid.8664.cDepartment of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
15
|
Wang X, Srivastava Y, Jankowski A, Malik V, Wei Y, Del Rosario RC, Cojocaru V, Prabhakar S, Jauch R. DNA-mediated dimerization on a compact sequence signature controls enhancer engagement and regulation by FOXA1. Nucleic Acids Res 2019; 46:5470-5486. [PMID: 29669022 PMCID: PMC6009666 DOI: 10.1093/nar/gky259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with either an indirect DNA-mediated cooperativity or a direct protein-protein interaction. The cooperative homodimer formation is strictly constrained by precise half-site spacing. Re-analysis of chromatin immunoprecipitation sequencing data indicates that the DIV is effectively targeted by FOXA1 in the context of chromatin. Reporter assays show that FOXA1-dependent transcriptional activity declines when homodimeric binding is disrupted. In response to phosphatidylinositol-3 kinase inhibition DIV sites pre-bound by FOXA1 such as at the PVT1/MYC locus exhibit a strong increase in accessibility suggesting a role of the DIV configuration in the chromatin closed-open dynamics. Moreover, several disease-associated single nucleotide polymorphisms map to DIV elements and show allelic differences in FOXA1 homodimerization, reporter gene expression and are annotated as quantitative trait loci. This includes the rs541455835 variant at the MAPT locus encoding the Tau protein associated with Parkinson's disease. Collectively, the DIV guides chromatin engagement and regulation by FOXA1 and its perturbation could be linked to disease etiologies.
Collapse
Affiliation(s)
- Xuecong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yogesh Srivastava
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aleksander Jankowski
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warszawa, Poland.,Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Wei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo Ch Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge MA 02142, USA
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Saline M, Badertscher L, Wolter M, Lau R, Gunnarsson A, Jacso T, Norris T, Ottmann C, Snijder A. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J Biol Chem 2019; 294:13106-13116. [PMID: 31308176 DOI: 10.1074/jbc.ra119.008649] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Indexed: 11/06/2022] Open
Abstract
Forkhead box protein O1 (FOXO1) is a transcription factor involved in various cellular processes such as glucose metabolism, development, stress resistance, and tumor suppression. FOXO1's transcriptional activity is controlled by different environmental cues through a myriad of posttranslational modifications. In response to growth factors, the serine/threonine kinase AKT phosphorylates Thr24 and Ser256 in FOXO1 to stimulate binding of 14-3-3 proteins, causing FOXO1 inactivation. In contrast, low nutrient and energy levels induce FOXO1 activity. AMP-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, partly mediates this effect through phosphorylation of Ser383 and Thr649 in FOXO1. In this study, we identified Ser22 as an additional AMPK phosphorylation site in FOXO1's N terminus, with Ser22 phosphorylation preventing binding of 14-3-3 proteins. The crystal structure of a FOXO1 peptide in complex with 14-3-3 σ at 2.3 Å resolution revealed that this is a consequence of both steric hindrance and electrostatic repulsion. Furthermore, we found that AMPK-mediated Ser22 phosphorylation impairs Thr24 phosphorylation by AKT in a hierarchical manner. Thus, numerous mechanisms maintain FOXO1 activity via AMPK signaling. AMPK-mediated Ser22 phosphorylation directly and indirectly averts binding of 14-3-3 proteins, whereas phosphorylation of Ser383 and Thr649 complementarily stimulates FOXO1 activity. Our results shed light on a mechanism that integrates inputs from both AMPK and AKT signaling pathways in a small motif to fine-tune FOXO1 transcriptional activity.
Collapse
Affiliation(s)
- Maria Saline
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Lukas Badertscher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Roxanne Lau
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anders Gunnarsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Jacso
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tyrrell Norris
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
17
|
Chen X, Wei H, Li J, Liang X, Dai S, Jiang L, Guo M, Qu L, Chen Z, Chen L, Chen Y. Structural basis for DNA recognition by FOXC2. Nucleic Acids Res 2019; 47:3752-3764. [PMID: 30722065 PMCID: PMC6468292 DOI: 10.1093/nar/gkz077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The FOXC family of transcription factors (FOXC1 and FOXC2) plays essential roles in the regulation of embryonic, ocular, and cardiac development. Mutations and abnormal expression of FOXC proteins are implicated in genetic diseases as well as cancer. In this study, we determined two crystal structures of the DNA-binding domain (DBD) of human FOXC2 protein, in complex with different DNA sites. The FOXC2-DBD adopts the winged-helix fold with helix H3 contributing to all the base specific contacts, while the N-terminus, wing 1, and the C-terminus of FOXC2-DBD all make additional contacts with the phosphate groups of DNA. Our structural, biochemical, and bioinformatics analyses allow us to revise the previously proposed DNA recognition mechanism and provide a model of DNA binding for the FOXC proteins. In addition, our structural analysis and accompanying biochemical assays provide a molecular basis for understanding disease-causing mutations in FOXC1 and FOXC2.
Collapse
Affiliation(s)
- Xiaojuan Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longying Jiang
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Li J, Dantas Machado AC, Guo M, Sagendorf JM, Zhou Z, Jiang L, Chen X, Wu D, Qu L, Chen Z, Chen L, Rohs R, Chen Y. Structure of the Forkhead Domain of FOXA2 Bound to a Complete DNA Consensus Site. Biochemistry 2017. [PMID: 28644006 DOI: 10.1021/acs.biochem.7b00211] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FOXA2, a member of the forkhead family of transcription factors, plays essential roles in liver development and bile acid homeostasis. In this study, we report a 2.8 Å co-crystal structure of the FOXA2 DNA-binding domain (FOXA2-DBD) bound to a DNA duplex containing a forkhead consensus binding site (GTAAACA). The FOXA2-DBD adopts the canonical winged-helix fold, with helix H3 and wing 1 regions mainly mediating the DNA recognition. Although the wing 2 region was not defined in the structure, isothermal titration calorimetry assays suggested that this region was required for optimal DNA binding. Structure comparison with the FOXA3-DBD bound to DNA revealed more major groove contacts and fewer minor groove contacts in the FOXA2 structure than in the FOXA3 structure. Structure comparison with the FOXO1-DBD bound to DNA showed that different forkhead proteins could induce different DNA conformations upon binding to identical DNA sequences. Our findings provide the structural basis for FOXA2 protein binding to a consensus forkhead site and elucidate how members of the forkhead protein family bind different DNA sites.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Ming Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Jared M Sagendorf
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Zhan Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Longying Jiang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Daichao Wu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lin Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China.,Collaborative Innovation Center for Cancer Medicine , Guangzhou, Guangdong 510060, China
| |
Collapse
|