1
|
Huang X, Li C, Zhang K, Li K, Xie J, Peng Y, Quan M, Sun Y, Hu Y, Xia L, Hu S. Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria. Int J Mol Sci 2024; 25:7579. [PMID: 39062822 PMCID: PMC11277461 DOI: 10.3390/ijms25147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.H.); (K.L.); (L.X.)
| |
Collapse
|
2
|
Keck C, Enninga J, Swistak L. Caught in the act: In situ visualization of bacterial secretion systems by cryo-electron tomography. Mol Microbiol 2024; 121:636-645. [PMID: 37975530 DOI: 10.1111/mmi.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.
Collapse
Affiliation(s)
- Camille Keck
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| |
Collapse
|
3
|
Worrall LJ, Majewski DD, Strynadka NCJ. Structural Insights into Type III Secretion Systems of the Bacterial Flagellum and Injectisome. Annu Rev Microbiol 2023; 77:669-698. [PMID: 37713458 DOI: 10.1146/annurev-micro-032521-025503] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| | - Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
- Current affiliation: Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| |
Collapse
|
4
|
Chen P, Goldberg MB. Recent insights into type-3 secretion system injectisome structure and mechanism of human enteric pathogens. Curr Opin Microbiol 2023; 71:102232. [PMID: 36368294 PMCID: PMC10510281 DOI: 10.1016/j.mib.2022.102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Type-3 secretion system injectisomes are multiprotein complexes that translocate bacterial effector proteins from the cytoplasm of gram-negative bacteria directly into the cytosol of eukaryotic host cells. These systems are present in more than 30 bacterial species, including numerous human, animal, and plant pathogens. We review recent discoveries of structural and molecular mechanisms of effector protein translocation through the injectisomes and recent advances in the understanding of mechanisms of activation of effector protein secretion.
Collapse
Affiliation(s)
- Poyin Chen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Gilzer D, Baum E, Lieske N, Kowal JL, Niemann HH. Crystals of SctV from different species reveal variable symmetry for the cytosolic domain of the type III secretion system export gate. Acta Crystallogr F Struct Biol Commun 2022; 78:386-394. [PMID: 36322424 PMCID: PMC9629515 DOI: 10.1107/s2053230x22009736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Type III secretion systems (T3SSs) are proteinaceous devices employed by Gram-negative bacteria to directly transport proteins into a host cell. Substrate recognition and secretion are strictly regulated by the export apparatus of the so-called injectisome. The export gate SctV engages chaperone-bound substrates of the T3SS in its nonameric cytoplasmic domain. Here, the purification and crystallization of the cytoplasmic domains of SctV from Photorhabdus luminescens (LscVC) and Aeromonas hydrophila (AscVC) are reported. Self-rotation functions revealed that LscVC forms oligomers with either eightfold or ninefold symmetry in two different crystal forms. Similarly, AscVC was found to exhibit tenfold rotational symmetry. These are the first instances of SctV proteins forming non-nonameric oligomers.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Eileen Baum
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Nele Lieske
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Julia L. Kowal
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Conserved GYXLI Motif of FlhA Is Involved in Dynamic Domain Motions of FlhA Required for Flagellar Protein Export. Microbiol Spectr 2022; 10:e0111022. [PMID: 35876582 PMCID: PMC9431611 DOI: 10.1128/spectrum.01110-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Flagellar structural subunits are transported via the flagellar type III secretion system (fT3SS) and assemble at the distal end of the growing flagellar structure. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for export substrates and flagellar chaperones and plays an important role in hierarchical protein targeting and export. FlhAC consists of domains D1, D2, D3, and D4 and adopts open and closed conformations. Gly-368 of Salmonella FlhA is located within the highly conserved GYXLI motif and is critical for the dynamic domain motions of FlhAC. However, it remains unclear how it works. Here, we report that periodic conformational changes of the GYXLI motif induce a remodeling of hydrophobic side chain interaction networks in FlhAC and promote the cyclic open-close domain motions of FlhAC. The temperature-sensitive flhA(G368C) mutation stabilized a completely closed conformation at 42°C through strong hydrophobic interactions between Gln-498 of domain D1 and Pro-667 of domain D4 and between Phe-459 of domain D2 and Pro-646 of domain D4, thereby inhibiting flagellar protein export by the fT3SS. Its intragenic suppressor mutations reorganized the hydrophobic interaction networks in the closed FlhAC structure, restoring the protein export activity of the fT3SS to a significant degree. Furthermore, the conformational flexibility of the GYXLI motif was critical for flagellar protein export. We propose that the conserved GYXLI motif acts as a structural switch to induce the dynamic domain motions of FlhAC required for efficient and rapid protein export by the fT3SS. IMPORTANCE Many motile bacteria employ the flagellar type III secretion system (fT3SS) to construct flagella beyond the cytoplasmic membrane. The C-terminal cytoplasmic domain of FlhA (FlhAC), a transmembrane subunit of the fT3SS, provides binding sites for export substrates and flagellar export chaperones to coordinate flagellar protein export with assembly. FlhAC undergoes cyclic open-close domain motions. The highly conserved Gly-368 residue of FlhA is postulated to be critical for dynamic domain motions of FlhAC. However, it remains unknown how it works. Here, we carried out mutational analysis of FlhAC combined with molecular dynamics simulation and provide evidence that the conformational flexibility of FlhAC by Gly-368 is important for remodeling hydrophobic side chain interaction networks in FlhAC to facilitate its cyclic open-close domain motions, allowing the fT3SS to transport flagellar structural subunits for efficient and rapid flagellar assembly.
Collapse
|
7
|
Bergeron JRC, Marlovits TC. Cryo-EM of the injectisome and type III secretion systems. Curr Opin Struct Biol 2022; 75:102403. [PMID: 35724552 PMCID: PMC10114087 DOI: 10.1016/j.sbi.2022.102403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Double-membrane-spanning protein complexes, such as the T3SS, had long presented an intractable challenge for structural biology. As a consequence, until a few years ago, our molecular understanding of this fascinating complex was limited to composite models, consisting of structures of isolated domains, positioned within the overall complex. Most of the membrane-embedded components remained completely uncharacterized. In recent years, the emergence of cryo-electron microscopy (cryo-EM) as a method for determining protein structures to high resolution, has be transformative to our capacity to understand the architecture of this complex, and its mechanism of substrate transport. In this review, we summarize the recent structures of the various T3SS components, determined by cryo-EM, and highlight the regions of the complex that remain to be characterized. We also discuss the recent structural insights into the mechanism of effector transport through the T3SS. Finally, we highlight some of the challenges that remain to be tackled.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Gilzer D, Schreiner M, Niemann HH. Direct interaction of a chaperone-bound type III secretion substrate with the export gate. Nat Commun 2022; 13:2858. [PMID: 35654781 PMCID: PMC9163089 DOI: 10.1038/s41467-022-30487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
10
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Xu J, Wang J, Liu A, Zhang Y, Gao X. Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein. Microbiol Spectr 2021; 9:e0125121. [PMID: 34851139 PMCID: PMC8635156 DOI: 10.1128/spectrum.01251-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The type III secretion (T3S) injectisome is a syringe-like protein-delivery nanomachine widely utilized by Gram-negative bacteria. It can deliver effector proteins directly from bacteria into eukaryotic host cells, which is crucial for the bacterial-host interaction. Intracellular pathogen Salmonella enterica serovar Typhimurium encodes two sets of T3S injectisomes from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), which are critical for its host invasion and intracellular survival, respectively. The inner membrane export gate protein, SctV (InvA in SPI-1 and SsaV in SPI-2), is the largest component of the injectisome and is essential for assembly and function of T3SS. Here, we report the 2.11 Å cryo-EM structure of the SsaV cytoplasmic domain (SsaVC) in the context of a full-length SctV chimera consisting of the transmembrane region of InvA, the linker of SsaV (SsaVL) and SsaVC. The structural analysis shows that SsaVC exists in a semi-open state and SsaVL exhibits two major orientations, implying a highly dynamic process of SsaV for the substrate selection and secretion in a full-length context. A biochemical assay indicates that SsaVL plays an essential role in maintaining the nonameric state of SsaV. This study offers near atomic-level insights into how SsaVC and SsaVL facilitate the assembly and function of SsaV and may lead to the development of potential anti-virulence therapeutics against T3SS-mediated bacterial infection. IMPORTANCE Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection. Export gate protein SctV, as one of the engines of T3SS, is at the center of T3SS assembly and function. In this study, we show the high-resolution atomic structure of the cytosolic domain of SctV in the nonameric state with variable linker conformations. Our first observation of conformational changes of the linker region of SctV and the semi-open state of the cytosolic domain of SctV in the full-length context further support that the substrate selection and secretion process of SctV is highly dynamic. These findings have important implications for the development of therapeutic strategies targeting SctV to combat T3SS-mediated bacterial infection.
Collapse
Affiliation(s)
- Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aijun Liu
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Wu HP, Derilo RC, Chen HL, Li TR, Lagitnay RBJS, Chan YC, Chuang Y, Chuang DY. Injectisome T3SS subunits as potential chaperones in the extracellular export of Pectobacterium carotovorum subsp. carotovorum bacteriocins Carocin S1 and Carocin S3 secreted via flagellar T3SS. BMC Microbiol 2021; 21:345. [PMID: 34911446 PMCID: PMC8672553 DOI: 10.1186/s12866-021-02405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) causes soft-rot disease in a wide variety of plants resulting in economic losses worldwide. It produces various types of bacteriocin to compete against related plant pathogens. Studies on how bacteriocins are extracellularly secreted are conducted to understand the mechanism of interbacterial competition. In this study, the secretion of the low-molecular-weight bacteriocins (LMWB) Carocin S1 and Carocin S3 produced by a multiple-bacteriocin producing strain of Pcc, 89-H-4, was investigated. Tn5 insertional mutagenesis was used to generate a mutant, TH22-6, incapable of LMWBs secretion. Sequence and homology analyses of the gene disrupted by transposon Tn5 insertion revealed that the gene sctT, an essential component of the injectisome type III secretion machinery (T3aSS), is required for the secretion of the bacteriocins. This result raised a question regarding the nature of the secretion mechanism of Pcc bacteriocins which was previously discovered to be secreted via T3bSS, a system that utilizes the bacterial flagellum for extracellular secretions. Our previous report has shown that bacteriocin Carocin S1 cannot be secreted by mutants that are defective of T3bSS-related genes such as flhA, flhC, flhD and fliC. We knocked out several genes making up the significant structural components of both T3aSS and T3bSS. The findings led us to hypothesize the potential roles of the T3aSS-related proteins, SctT, SctU and SctV, as flagellar T3SS chaperones in the secretion of Pcc bacteriocins. This current discovery and the findings of our previous study helped us to conceptualize a unique Type III secretion system for bacteriocin extracellular export which is a hybrid of the injectisome and flagellar secretion systems.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Teacher Education, Nueva Vizcaya State University Bambang Campus, Bambang, Nueva Vizcaya, Philippines
| | - Han-Ling Chen
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Tzu-Rung Li
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Ruchi Briam James S Lagitnay
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Arts and Sciences, Nueva Vizcaya State University Bayombong Campus, Bayombong, Nueva Vizcaya, Philippines
| | - Yung-Chieh Chan
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Yutin Chuang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
13
|
Structural Dynamics of the Functional Nonameric Type III Translocase Export Gate. J Mol Biol 2021; 433:167188. [PMID: 34454944 DOI: 10.1016/j.jmb.2021.167188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.
Collapse
|
14
|
Mitrović B, Lezerovich S, Sal-Man N. The Role of the Membrane-Associated Domain of the Export Apparatus Protein, EscV (SctV), in the Activity of the Type III Secretion System. Front Microbiol 2021; 12:719469. [PMID: 34413845 PMCID: PMC8369761 DOI: 10.3389/fmicb.2021.719469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Diarrheal diseases remain a major public health concern worldwide. Many of the causative bacterial pathogens that cause these diseases have a specialized protein complex, the type III secretion system (T3SS), which delivers effector proteins directly into host cells. These effectors manipulate host cell processes for the benefit of the infecting bacteria. The T3SS structure resembles a syringe anchored within the bacterial membrane, projecting toward the host cell membrane. The entry port of the T3SS substrates, called the export apparatus, is formed by five integral membrane proteins. Among the export apparatus proteins, EscV is the largest, and as it forms a nonamer, it constitutes the largest portion of the export apparatus complex. While there are considerable data on the soluble cytoplasmic domain of EscV, our knowledge of its membrane-associated section and its transmembrane domains (TMDs) is still very limited. In this study, using an isolated genetic reporter system, we found that TMD5 and TMD6 of EscV mediate strong self-oligomerization. Substituting these TMDs within the full-length protein with a random hydrophobic sequence resulted in a complete loss of function of the T3SS, further suggesting that the EscV TMD5 and TMD6 sequences have a functional role in addition to their structural role as membrane anchors. As we observed only mild reduction in the ability of the TMD-exchanged variants to integrate into the full or intermediate T3SS complexes, we concluded that EscV TMD5 and TMD6 are not crucial for the global assembly or stability of the T3SS complex but are rather involved in promoting the necessary TMD–TMD interactions within the complex and the overall TMD orientation to allow channel opening for the entry of T3SS substrates.
Collapse
Affiliation(s)
- Boško Mitrović
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shir Lezerovich
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
15
|
Kuhlen L, Johnson S, Cao J, Deme JC, Lea SM. Nonameric structures of the cytoplasmic domain of FlhA and SctV in the context of the full-length protein. PLoS One 2021; 16:e0252800. [PMID: 34143799 PMCID: PMC8213127 DOI: 10.1371/journal.pone.0252800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Type three secretion is the mechanism of protein secretion found in bacterial flagella and injectisomes. At its centre is the export apparatus (EA), a complex of five membrane proteins through which secretion substrates pass the inner membrane. While the complex formed by four of the EA proteins has been well characterised structurally, little is known about the structure of the membrane domain of the largest subunit, FlhA in flagella, SctV in injectisomes. Furthermore, the biologically relevant nonameric assembly of FlhA/SctV has been infrequently observed and differences in conformation of the cytoplasmic portion of FlhA/SctV between open and closed states have been suggested to reflect secretion system specific differences. FlhA has been shown to bind to chaperone-substrate complexes in an open state, but in previous assembled ring structures, SctV is in a closed state. Here, we identify FlhA and SctV homologues that can be recombinantly produced in the oligomeric state and study them using cryo-electron microscopy. The structures of the cytoplasmic domains from both FlhA and SctV are in the open state and we observe a conserved interaction between a short stretch of residues at the N-terminus of the cytoplasmic domain, known as FlhAL/SctVL, with a groove on the adjacent protomer’s cytoplasmic domain, which stabilises the nonameric ring assembly.
Collapse
Affiliation(s)
- Lucas Kuhlen
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Center for Structural Biology, Center for Cancer Research, National Insititutes of Health, Frederick, MD, United States of America
| | - Jerry Cao
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Justin C. Deme
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Center for Structural Biology, Center for Cancer Research, National Insititutes of Health, Frederick, MD, United States of America
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
| | - Susan M. Lea
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Center for Structural Biology, Center for Cancer Research, National Insititutes of Health, Frederick, MD, United States of America
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu XJ, Grabe GJ, Holden DW, Nans A, Rosenthal PB, Rouse SL, Beeby M. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213:107729. [PMID: 33774138 PMCID: PMC8223533 DOI: 10.1016/j.jsb.2021.107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
CryoEM of a full-length type III secretion system SctV resolves cytoplasmic but not transmembrane domains. MD simulations show SctV protomers flexibly hinge. Acidification expands the SctV ring by altering interprotomer interactions.
Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A ‘gatekeeper’ complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region’s structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.
Collapse
Affiliation(s)
| | | | - Thomas Calcraft
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Signe Lagercrantz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiu-Jun Yu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Grzegorz J Grabe
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|