1
|
Automated classification of estrous stage in rodents using deep learning. Sci Rep 2022; 12:17685. [PMID: 36271290 PMCID: PMC9587051 DOI: 10.1038/s41598-022-22392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
The rodent estrous cycle modulates a range of biological functions, from gene expression to behavior. The cycle is typically divided into four stages, each characterized by distinct hormone concentration profiles. Given the difficulty of repeatedly sampling plasma steroid hormones from rodents, the primary method for classifying estrous stage is by identifying vaginal epithelial cell types. However, manual classification of epithelial cell samples is time-intensive and variable, even amongst expert investigators. Here, we use a deep learning approach to achieve classification accuracy at expert level. Due to the heterogeneity and breadth of our input dataset, our deep learning approach ("EstrousNet") is highly generalizable across rodent species, stains, and subjects. The EstrousNet algorithm exploits the temporal dimension of the hormonal cycle by fitting classifications to an archetypal cycle, highlighting possible misclassifications and flagging anestrus phases (e.g., pseudopregnancy). EstrousNet allows for rapid estrous cycle staging, improving the ability of investigators to consider endocrine state in their rodent studies.
Collapse
|
2
|
Chang TJ, Lai WQ, Chang YF, Wang CL, Yang DM. Development and optimization of heavy metal lead biosensors in biomedical and environmental applications. J Chin Med Assoc 2021; 84:745-753. [PMID: 34225337 DOI: 10.1097/jcma.0000000000000574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detrimental impact of the heavy metal lead (Pb) on human health has been studied for years. The fact that Pb impairs human body has been established from countless painful and sad historical events. Nowadays, World Health Organization and many developmental countries have established regulations concerning the use of Pb. Measuring the blood lead level (BLL) is so far the only way to officially evaluate the degree of Pb exposure, but the so-called safety value (10 μg/dL in adults and 5 μg/dL in children) seems unreliable to represent the security checkpoint for children through daily intake of drinking water or physical contact with a lower contaminated level of Pb contents. In general, unsolved mysteries about the Pb toxicological mechanisms still remain. In this review article, we report on the methods to prevent Pb poison for further Pb toxicological research. We establish high-sensitivity Pb monitoring, and also report on the use of fluorescent biosensors such as genetically-encoded fluorescence resonance energy transfer-based biosensors built for various large demands such as the detection of severe acute respiratory syndrome coronavirus 2. We also contribute to the development and optimization of the FRET-based Pb biosensors. Our well-performed version of Met-lead 1.44 M1 has achieved a limit of detection of 10 nM (2 ppb; 0.2 μg/dL) and almost 5-fold in dynamic range (DR) supported for the real practical applications-that is, the in-cell Pb sensing device for blood and blood-related samples, and the Pb environmental detections in vitro. The perspective of our powerful Pb biosensor incorporated with a highly sensitive bio-chip of the portable device for quick Pb measurements will be addressed for further manipulation.
Collapse
Affiliation(s)
- Tai-Jay Chang
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Qun Lai
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Ryu J, Lee E, Kang C, Lee M, Kim S, Park S, Lee D, Kwon Y. Rapid Screening of Glucocorticoid Receptor (GR) Effectors Using Cortisol-Detecting Sensor Cells. Int J Mol Sci 2021; 22:4747. [PMID: 33947115 PMCID: PMC8124850 DOI: 10.3390/ijms22094747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
Cortisol, a stress hormone, plays key roles in mediating stress and anti-inflammatory responses. As abnormal cortisol levels can induce various adverse effects, screening cortisol and cortisol analogues is important for monitoring stress levels and for identifying drug candidates. A novel cell-based sensing system was adopted for rapid screening of cortisol and its functional analogues under complex cellular regulation. We used glucocorticoid receptor (GR) fused to a split intein which reconstituted with the counterpart to trigger conditional protein splicing (CPS) in the presence of targets. CPS generates functional signal peptides which promptly translocate the fluorescent cargo. The sensor cells exhibited exceptional performance in discriminating between the functional and structural analogues of cortisol with improved sensitivity. Essential oil extracts with stress relief activity were screened using the sensor cells to identify GR effectors. The sensor cells responded to peppermint oil, and L-limonene and L-menthol were identified as potential GR effectors from the major components of peppermint oil. Further analysis indicated L-limonene as a selective GR agonist (SEGRA) which is a potential anti-inflammatory agent as it attenuates proinflammatory responses without causing notable adverse effects of GR agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (J.R.); (E.L.); (C.K.); (M.L.); (S.K.); (S.P.); (D.L.)
| |
Collapse
|
4
|
Soleja N, Manzoor O, Khan I, Ahmad A, Mohsin M. Role of green fluorescent proteins and their variants in development of FRET-based sensors. J Biosci 2018. [DOI: 10.1007/s12038-018-9783-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Salehi ASM, Yang SO, Earl CC, Shakalli Tang MJ, Porter Hunt J, Smith MT, Wood DW, Bundy BC. Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach. Toxicol Appl Pharmacol 2018; 345:19-25. [PMID: 29499249 DOI: 10.1016/j.taap.2018.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/26/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
Many diseases and disorders are linked to exposure to endocrine disrupting chemicals (EDCs) that mimic the function of natural estrogen hormones. Here we present a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting chemicals that interact with the human estrogen receptor β (hERβ). This biosensor consists of an allosteric fusion protein, which is expressed using cell-free protein synthesis technology and is directly assayed by a colorimetric response. The resultant biosensor successfully detected known EDCs of hERβ (BPA, E2, and DPN) at similar or better detection range than an analogous cell-based biosensor, but in a fraction of time. We also engineered cell-free protein synthesis reactions with RNAse inhibitors to increase production yields in the presence of human blood and urine. The RAPID biosensor successfully detects EDCs in these human samples in the presence of RNAse inhibitors. Engineered cell-free protein synthesis facilitates the use of protein biosensors in complex sample matrices without cumbersome protein purification.
Collapse
Affiliation(s)
- Amin S M Salehi
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Seung Ook Yang
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Conner C Earl
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Miriam J Shakalli Tang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Mark T Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA.
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Bekić SS, Marinović MA, Petri ET, Sakač MN, Nikolić AR, Kojić VV, Ćelić AS. Identification of d-seco modified steroid derivatives with affinity for estrogen receptor α and β isoforms using a non-transcriptional fluorescent cell assay in yeast. Steroids 2018; 130:22-30. [PMID: 29224741 DOI: 10.1016/j.steroids.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Synthesis and biological evaluation of steroidal derivatives with anticancer properties is an active area of drug discovery. Here we measured the relative affinities of d-seco modified steroidal derivatives for estrogen receptor α, estrogen receptor β or androgen receptor ligand binding domains using an optimized non-transcriptional fluorescent cell assay in yeast. Ligand binding domains of steroid receptors were expressed in-frame with yellow fluorescent protein in the yeast Saccharomyces cerevisiae. Addition of known steroid ligands to yeast expressing the appropriate cognate receptor results in increased fluorescence intensity, enabling estimation of receptor binding affinities in a dose-response and time-dependent manner. Relative binding affinities of d-seco modified steroidal derivatives 1-4 were then evaluated using this yeast system by live cell fluorimetry and fluorescence microscopy, coupled with in vitro cytotoxicity and in silico molecular docking studies. d-Seco estratriene derivative 2displayed strong affinity for both estrogen receptor α and β ligand binding domains and negligible affinity for the androgen receptor ligand binding domain. Compound 2 also showed moderate cytotoxicity against estrogen receptor positive MCF-7 breast adenocarcinoma cells. In addition to identification of new ligands for steroid receptors, this assay could also be used to filter out compounds with potential for off-target interactions with steroid receptors during the early stages of compound screening.
Collapse
Affiliation(s)
- Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Maja A Marinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Andrea R Nikolić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Andjelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.
| |
Collapse
|
7
|
Abstract
The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.
Collapse
Affiliation(s)
- Fred Schaufele
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143-0540, USA.
| |
Collapse
|
8
|
Nanomaterial-based aptasensors and bioaffinity sensors for quantitative detection of 17β-estradiol. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ahirwar R, Nahar P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal Bioanal Chem 2015; 408:327-32. [PMID: 26476919 DOI: 10.1007/s00216-015-9090-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
Abstract
The increasing demand for easily available and low-cost diagnostics has fuelled the development of aptasensors as platforms for rapid, sensitive, and point-of-care testing of target analytes. Recently, gold nanoparticle (AuNP)-based aptasensors have attracted wide recognition owing to their color transition properties which allow real-time rapid sensing of targets. In this study, we utilized the color transition property of aptamer-functionalized AuNPs to detect and quantify estrogen receptor alpha (ERα), a key biomarker protein in breast cancer. We found that the coating of AuNPs with unmodified ERα-RNA aptamer (GGGGUCAAGGUGACCCC) makes them resistant to salt-induced aggregation. However, addition of ERα to the aptamer-protected AuNPs results in their spontaneous aggregation as evident from a color transition from wine red to deep blue. On the basis of this, we developed an ERα aptasensor, with limits of detection and quantification of 0.64 and 2.16 ng/mL, respectively; the aptasensor can efficiently detect and quantify ERα in a working range of 10 ng/mL-5μg/mL protein. Validation of the aptasensor on cellular extracts of ERα-positive MCF-7 and ERα-deficient MDA-MB-231 breast cancer cells showed a target-selective response in ERα-positive samples but not in cellular extracts of ERα-deficient breast cancer cells. Further, the small size and simple fabrication chemistry of aptamers provide an additional benefit to make the ERα aptasensor a potentially useful and cost-effective tool in point-of-care analyses of ERα.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, Delhi, 110007, India
| | - Pradip Nahar
- Department of Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India. .,CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, Delhi, 110007, India.
| |
Collapse
|
10
|
Wang D, Xie J, Zhu X, Li J, Zhao D, Zhao M. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens. Biosens Bioelectron 2014; 55:391-5. [DOI: 10.1016/j.bios.2013.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
|
11
|
Li Z, Yan M, Li Z, Vuki M, Wu D, Liu F, Zhong W, Zhang L, Xu D. A multiplexed screening method for agonists and antagonists of the estrogen receptor protein. Anal Bioanal Chem 2012; 403:1373-84. [DOI: 10.1007/s00216-012-5933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/24/2022]
|
12
|
Okumoto S, Jones A, Frommer WB. Quantitative imaging with fluorescent biosensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:663-706. [PMID: 22404462 DOI: 10.1146/annurev-arplant-042110-103745] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
13
|
McLachlan MJ, Katzenellenbogen JA, Zhao H. A new fluorescence complementation biosensor for detection of estrogenic compounds. Biotechnol Bioeng 2011; 108:2794-803. [PMID: 21732327 DOI: 10.1002/bit.23254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 06/21/2011] [Indexed: 11/09/2022]
Abstract
Estrogenic compounds are an important class of hormonal substances that can be found as environmental contaminants, with sources including pharmaceuticals, human and animal waste, the chemical industry, and microbial metabolism. Here we report the creation of a biosensor useful for monitoring such compounds, based on complementation of fluorescent protein fragments. A series of sensors were made consisting of fragments of a split mVenus fluorescent protein fused at several different N-terminal and C-terminal positions flanking the ligand binding domain of the estrogen receptor alpha. When expressed in HeLa cells, sensor 6 (ERα 312-595) showed a nine-fold increase in fluorescence in the presence of estrogen receptor agonists or antagonists. Sensor 2 (ERα 281-549) discriminated between agonists and antagonists by showing a decrease in fluorescence in the presence of agonists while being induced by antagonists. The fluorescent signal of sensor 6 increased over a period of 24 h, with a two-fold induction visible at 4 h and four-fold at 8 h of ligand incubation. Ligand titration showed a good correlation with the known relative binding affinities of the compound. The sensor could detect a number of compounds of interest that can act as environmental endocrine disruptors. The lack of a substrate requirement, the speed of signal development, the potential for high throughput assays, and the ability to distinguish agonists from antagonists make this an attractive sensor for widespread use.
Collapse
Affiliation(s)
- Michael J McLachlan
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
14
|
Dumbrepatil AB, Lee SG, Chung SJ, Lee MG, Park BC, Kim TJ, Woo EJ. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst 2010; 135:2879-86. [PMID: 20877819 DOI: 10.1039/c0an00385a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phytoestrogens are plant compounds that mimic the actions of endogenous estrogens. The abundance of these chemicals in nature and their potential effects on health require the development of a convenient method to detect phytoestrogens. We have developed a nanoparticle (NP)-conjugated FRET probe based on the human estrogen receptor α (ER) ligand-binding domain (LBD) to detect phytoestrogens. The NP-conjugated FRET probe showed fluorescence signals for genistein, resveratrol and daidzein compounds with Δ ratios of 1.65, 2.60 and 1.37 respectively, which are approximately six times greater compared to individual FRET probes. A significantly higher signal for resveratrol versus genistein and daidzein indicates that the probe can differentiate between antagonistic phytoalexin substances and agonistic isoflavone compounds. NP-conjugated probes demonstrated a wide dynamic range, ranging from 10(-18) to 10(-1) M with EC(50) values of 9.6 × 10(-10), 9.0 × 10(-10) and 9.2 × 10(-10) M for genistein, daidzein and resveratrol respectively, whereas individual probes detected concentrations of 10(-13) to 10(-4) M for phytoestrogens compounds. The time profile revealed that the NP-conjugated probe is stable over 30 h and there is not a significant deviation in the FRET signal at room temperature. These data demonstrate that conjugation of a FRET probe to nanoparticles is able to serve as an effective FRET sensor for monitoring bioactive compounds with significantly increased sensitivity, dynamic range and stability.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Korea Research Institute of Biosciences and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Biochemistry Department, Science College, and Pharmacology Department, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Layla M Faddah
- Biochemistry Department, Science College, and Pharmacology Department, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Picazo F, Domingo B, Pérez-Ortiz JM, Llopis J. Imaging local estrogen production in single living cells with recombinant fluorescent indicators. Biosens Bioelectron 2010; 26:2147-53. [PMID: 20947335 DOI: 10.1016/j.bios.2010.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/07/2010] [Accepted: 09/11/2010] [Indexed: 11/25/2022]
Abstract
Estrogens are steroid hormones with many systemic effects in addition to development and maintenance of the female reproductive system, and ligands of estrogen receptors are of clinical importance because of their use as oral contraceptive, hormone replacement and antitumoral therapy. In addition, tumoral tissues have been found to express aromatase and other steroidogenic enzymes synthesizing estradiol. To aid in the understanding of these processes, we have developed assays to image the local production of estrogens in isolated living mammalian cells. We constructed biosensors based on estrogen receptor α ligand binding domain and fluorescent proteins by following two approaches. First, the ligand binding domain and a short fragment of steroid receptor coactivator-1 were appended to a circularly permuted yellow fluorescent protein to construct an excitation ratio estrogen indicator. In the second strategy, we constructed emission ratio sensors based on fluorescence resonance energy transfer, containing the ligand binding domain flanked by donor and acceptor fluorescent proteins. Estrogens altered the fluorescence signal of cells transfected with the indicators in a dose-dependent manner. We imaged local estrogen production in adrenocortical H295 cells expressing aromatase and transfected with the fluorescent sensors. In addition, paracrine detection was observed in HeLa cells harboring the indicators and co-cultured with H295 cells. This imaging approach may allow detection of physiological levels of these hormones in suitable animal models.
Collapse
Affiliation(s)
- Fernando Picazo
- Centro Regional de Investigaciones Biomédicas and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Spain
| | | | | | | |
Collapse
|
17
|
Chang KS, Luo L, Chang CW, Huang YC, Cheng CY, Hung CS, Diau EWG, Li YK. Novel Steroid-Sensing Model and Characterization of Protein Interactions Based on Fluorescence Anisotropy Decay. J Phys Chem B 2010; 114:4327-34. [DOI: 10.1021/jp908509w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ko-Shing Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Liyang Luo
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Wei Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chieh Huang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Yu Cheng
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Shiung Hung
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Aoki K, Kiyokawa E, Nakamura T, Matsuda M. Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Förster resonance energy transfer. Philos Trans R Soc Lond B Biol Sci 2008; 363:2143-51. [PMID: 18343776 DOI: 10.1098/rstb.2008.2267] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence probes based on the principle of Förster resonance energy transfer (FRET) have shed new light on our understanding of signal transduction cascades. Among them, unimolecular FRET probes containing fluorescence proteins are rapidly increasing in number because these genetically encoded probes can be easily loaded into living cells and allow simple acquisition of FRET images. We have developed probes for small GTPases, tyrosine kinases, serine-threonine kinases and phosphoinositides. Images obtained with these probes have revealed that membrane protrusions such as nascent lamellipodia or neurites provide an active signalling platform in the growth factor-stimulated cells.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
19
|
A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors. Biosens Bioelectron 2008; 23:1883-6. [PMID: 18403195 DOI: 10.1016/j.bios.2008.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/20/2022]
Abstract
Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surface of UTB-FETs were modified with N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) and then gold nanoparticles (AuNPs) to immobilize the bio-component, the genetically engineered Delta(5)-3-ketosteroid isomerase (Art_KSI) or the Art_KSI conjugated with charged reporter (Art_KSI_mA51). The binding of charge-based molecules or nanoparticles has been demonstrated to strongly affect the conductivity of UTB-FETs; the increase or decrease of the conductance depends on the polarity of the immobilized molecules or nanoparticles. A new protocol involving the detection of a non-charged analyte relied on the competitive binding of analyte (19-norandrostendione) and a charged reporter (mA51) with KSI. When exposed to a 19-norandrostendione solution (10 microM), the conductance of Art_KSI_mA51-modified UTB-FET increased by 265 nS ( approximately 12%). On the other hand, conductance of Art_KSI-modified UTB-FET showed no distinct change under the same detection conditions.
Collapse
|
20
|
Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 2007; 5:e257. [PMID: 17896864 PMCID: PMC1988858 DOI: 10.1371/journal.pbio.0050257] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 07/30/2007] [Indexed: 12/20/2022] Open
Abstract
Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.
Collapse
Affiliation(s)
- Thijs Kaper
- Department of Plant Biology, Carnegie Institution, Stanford, California, United States of America
| | - Loren L Looger
- Department of Plant Biology, Carnegie Institution, Stanford, California, United States of America
| | - Hitomi Takanaga
- Department of Plant Biology, Carnegie Institution, Stanford, California, United States of America
| | - Michael Platten
- Department of Neuro-oncology, University Hospital of Heidelberg, INF 400, Heidelberg, Germany
- German Cancer Research Center, INF 280, Heidelberg, Germany
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Li IT, Pham E, Truong K. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 2006; 28:1971-82. [PMID: 17021660 DOI: 10.1007/s10529-006-9193-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/01/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Genetically-coded, fluorescence resonance energy transfer (FRET) biosensors are widely used to study molecular events from single cells to whole organisms. They are unique among biosensors because of their spontaneous fluorescence and targeting specificity to both organelles and tissues. In this review, we discuss the theoretical basis of FRET with a focus on key parameters responsible for designing FRET biosensors that have the highest sensitivity. Next, we discuss recent applications that are grouped into four common biosensor design patterns--intermolecular FRET, intramolecular FRET, FRET from substrate cleavage and FRET using multiple colour fluorescent proteins. Lastly, we discuss recent progress in creating fluorescent proteins suitable for FRET purposes. Together these advances in the development of FRET biosensors are beginning to unravel the interconnected and intricate signalling processes as they are occurring in living cells and organisms.
Collapse
Affiliation(s)
- Isaac T Li
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ont., Canada, M5S 3G9
| | | | | |
Collapse
|