1
|
Prediagnostic Circulating Levels of Sex Steroid Hormones and SHBG in Relation to Risk of Ductal Carcinoma In Situ of the Breast among UK Women. Cancer Epidemiol Biomarkers Prev 2020; 29:1058-1066. [DOI: 10.1158/1055-9965.epi-19-1302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
|
2
|
Williams GP, Darbre PD. Low-dose environmental endocrine disruptors, increase aromatase activity, estradiol biosynthesis and cell proliferation in human breast cells. Mol Cell Endocrinol 2019; 486:55-64. [PMID: 30817981 DOI: 10.1016/j.mce.2019.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/07/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Phenolic endocrine-disrupting compounds (EDCs) have long been suspected of increasing human breast cancer risk, via aromatase up-regulation; however, the metabolic effects upon aromatase in human breast cells exposed to environmentally relevant concentrations of phenolic compounds, have not been addressed. OBJECTIVES To examine the mechanistic responses of aromatase CYP19A1 mRNA, aromatase activity, estradiol biosynthesis and cellular proliferation, in three human breast cell lines, exposed to seven phenolic compounds, at environmentally relevant concentrations. METHODS MCF-7 and ZR-75-1 breast cancer cells, and HMF3A breast fibroblasts were treated with specific concentrations of p,p'-DDT, methoxychlor, benzophenone-2, bisphenol A, bisphenol S, 4-phenylphenol and n-butylparaben, with and without the presence of aromatase inhibitors and estrogen receptor inhibitors. RESULTS All test EDCs up-regulated aromatase mRNA, increased aromatase activity, significantly increased the aromatase-induced biosynthesis of the breast carcinogen 17β-estradiol, and increased ERα-positive breast cell proliferation. CONCLUSION Inadvertent exposures to 'phenolic' EDCs, increase estradiol biosynthesis, and estrogen-sensitive breast cancer proliferation.
Collapse
Affiliation(s)
- Graeme P Williams
- Molecular and Cellular Medicine Group, School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6UB, United Kingdom.
| | - Philippa D Darbre
- Molecular and Cellular Medicine Group, School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6UB, United Kingdom
| |
Collapse
|
3
|
Villanueva H, Grimm S, Dhamne S, Rajapakshe K, Visbal A, Davis CM, Ehli EA, Hartig SM, Coarfa C, Edwards DP. The Emerging Roles of Steroid Hormone Receptors in Ductal Carcinoma in Situ (DCIS) of the Breast. J Mammary Gland Biol Neoplasia 2018; 23:237-248. [PMID: 30338425 PMCID: PMC6244884 DOI: 10.1007/s10911-018-9416-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor to most types of invasive breast cancer (IBC). Although it is estimated only one third of untreated patients with DCIS will progress to IBC, standard of care for treatment is surgery and radiation. This therapeutic approach combined with a lack of reliable biomarker panels to predict DCIS progression is a major clinical problem. DCIS shares the same molecular subtypes as IBC including estrogen receptor (ER) and progesterone receptor (PR) positive luminal subtypes, which encompass the majority (60-70%) of DCIS. Compared to the established roles of ER and PR in luminal IBC, much less is known about the roles and mechanism of action of estrogen (E2) and progesterone (P4) and their cognate receptors in the development and progression of DCIS. This is an underexplored area of research due in part to a paucity of suitable experimental models of ER+/PR + DCIS. This review summarizes information from clinical and observational studies on steroid hormones as breast cancer risk factors and ER and PR as biomarkers in DCIS. Lastly, we discuss emerging experimental models of ER+/PR+ DCIS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Clinical Trials as Topic
- Disease Models, Animal
- Disease Progression
- Estrogens/metabolism
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Observational Studies as Topic
- Predictive Value of Tests
- Progesterone/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sagar Dhamne
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Adriana Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Santen RJ, Radisky DC, Degnim A, Frost MH, Vachon CM, Ghosh K, Guestini F, McNamara KM, Sasano H. Aromatase expression in atypical ductal hyperplasia in women. Breast Cancer Res Treat 2017; 163:623-629. [PMID: 28337664 DOI: 10.1007/s10549-017-4184-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine the levels of aromatase in atypical ductal hyperplasia (ADH) lesions, tissue surrounding the ADH, and in dense and non-dense normal breast tissue. We postulated that excess aromatase in breast tissue might, through production of increased estrogen, drive the carcinogenic process. Estrogens and their metabolites are thought to contribute to the development of breast cancer through estrogen receptor-mediated mechanisms and genotoxic effects of estrogen metabolites. ADH is a benign lesion of the breast which is associated with substantially increased risk for subsequent development of breast cancer. After 25 years, approximately 30% of women with ADH develop breast cancer. In women with three or more separate ADH lesions at the same time, 47% will develop breast cancer over that time period. Another important risk factor for breast cancer is the presence of mammographically dense breast tissue. METHODS We utilized quantitative immunochemical analysis of aromatase in biopsy tissue to test this possibility. Previously published results comparing dense with non-dense breast tissue in normal women (Vachon et al. Breast Cancer Res Treat 125:243-252, 2011) were used for comparisons with ADH. A well-characterized histochemical H-score was employed for quantitative assessment of aromatase in the various tissue studied. RESULTS The H-score of aromatase staining was statistically significantly higher (p = 0.003) in the ADH epithelium than surrounding epithelial tissue. In order of H-score from highest to lowest were ADH, issue surrounding ADH, dense normal and non-dense normal breast tissues. The levels of aromatase in a subset of women with ADH who went on to develop breast cancer were not higher than in women who did not. CONCLUSIONS We suggest from these studies that overexpression of aromatase in breast tissue and its resultant increase in estradiol levels may contribute to the later development of breast cancer in women with ADH.
Collapse
MESH Headings
- Adult
- Aromatase/genetics
- Biopsy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Receptors, Estrogen/genetics
Collapse
Affiliation(s)
- R J Santen
- University of Virginia Health Sciences System, Charlottesville, VA, USA.
| | | | | | | | | | - K Ghosh
- Mayo Clinic, Rochester, MN, USA
| | - F Guestini
- Tohoku University School of Medicine, Sendai, Japan
| | - K M McNamara
- Tohoku University School of Medicine, Sendai, Japan
| | - H Sasano
- Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett 2015; 361:155-63. [PMID: 25700776 DOI: 10.1016/j.canlet.2015.02.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Cancerous tissue is a complex mix of tumor cells, stromal cells and extracellular matrix (ECM), all of which make up a disordered and aggressive niche in comparison with organized and homeostatic normal tissue. It is well accepted that the tumor microenvironment plays an indispensable role in cancer development, and thus can be recognized as an additional cancer hallmark alongside those that are well established. In breast cancer, cancer associated fibroblasts (CAFs) are the predominant cellular components and play a centric role in the tumor microenvironment since they not only promote cancer initiation, growth, invasion, metastasis and therapeutic resistance but are also involved in microenvironmental events including angiogenesis/lymphangiogenesis, ECM remodeling, cancer-associated inflammation and metabolism reprogramming, all of which are known to have pre-malignancy potency. At the molecular level, there is a sophisticated network underlying the interactions between CAFs and epithelial cells as well as other stromal components. Accordingly, targeting CAFs provides a novel strategy in cancer therapy. Herein, we summarize the current understanding of the role of CAFs in breast cancer.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Nam KS, Ha BG, Shon YH. Chemopreventive activity of Cnidii Rhizoma for breast cancer. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
den Hollander P, Savage MI, Brown PH. Targeted therapy for breast cancer prevention. Front Oncol 2013; 3:250. [PMID: 24069582 PMCID: PMC3780469 DOI: 10.3389/fonc.2013.00250] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022] Open
Abstract
With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer.
Collapse
Affiliation(s)
- Petra den Hollander
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
8
|
Genotoxicity profiles in exfoliated human mammary cells recovered from lactating mothers in Istanbul; relationship with demographic and dietary factors. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:17-22. [DOI: 10.1016/j.mrgentox.2012.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/01/2012] [Accepted: 06/30/2012] [Indexed: 11/20/2022]
|
9
|
Smith JJ, Dunn BK. Biomarkers as molecular targets of drug interventions. Semin Oncol Nurs 2012; 28:109-15. [PMID: 22542318 DOI: 10.1016/j.soncn.2012.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To present an overview of biomarkers used in a multiplicity of roles, including as targets of therapeutic intervention for several organ sites. DATA SOURCES Journal articles and book chapters from medical and nursing literature, and internet resources. CONCLUSION A single molecular marker may function in a variety of roles (ie, markers of risk, diagnostics, prognostics, intermediate endpoints). In some instances the molecule can also function as a target of therapeutic intervention. IMPLICATIONS FOR NURSING PRACTICE Nursing implications include a better understanding of the nature of biomarkers and the multiplicity of their applications, especially with regard to therapeutic targets.
Collapse
Affiliation(s)
- Judith J Smith
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
10
|
Abstract
With biomolecular evidence accumulating at an exponential rate, there will be a surge in the development of targeted cancer prevention drugs and interventions in the next decade. Promising results from clinical treatment trials identify a spectrum of targeted cancer therapies in several broad categories. These include both small molecule inhibitors of either key receptors or enzyme binding sites, as well as intravenously delivered monoclonal antibodies that block a specific binding interaction between ligands and their receptors. These targeted interventions conform to a basic translational algorithm: biomarker present, biomarker modulated, and biomarker clinically relevant. A review of solid tumor targets provides a manageable list of factors that are critical to cancer cell survival. As such, these targets represent factors that are not only clinically relevant but also may play a critical role in early tumor development prior to the evolution of frank invasive malignancy. This possibility qualifies these targets for consideration in the development of cancer prevention interventions. Among solid tumors, the treatment of breast cancer with targeted drugs has a long record benchmarked by the initial US Food and Drug Administation (FDA) approval of tamoxifen for metastatic breast cancer treatment in 1977. Since then, the list of oncology drug targets has expanded to include aromatase, androgen receptor, the epidermal growth factor receptor (EGFR) family, and others. It is not surprising that tamoxifen was the first of the modern targeted therapies to be approved for cancer risk reduction and additional approvals are anticipated. The focus of this review is the pharmacologic manipulation of targets within epithelial tumor cells and the implication of those targets for intervening to suppress and eliminate premalignant cells in human tissue. Major obstacles to prevention drug development can be addressed by attention to two important areas. One of these is the refinement of early phase prevention trials to identify drug targets in epithelial cells that are at demonstrated risk of evolving into cancer cells, ie, cells from a developmental niche in cancer ontogeny. Early results suggest that molecular risk signatures may allow the investigational identification of molecular targets in premalignant tissue, with the possibility that chemoprevention agents can be used to eliminate the risk signature. To the extent that this approach can be developed, it will allow for cancer risk reduction in a way that is analogous to the measurement of tumor response to treatment. Even with improvements in the efficiency of clinical trials that come from using molecular risk signatures, there is an ever-growing list of chemoprevention agents that are candidates for evaluation. Improved prevention drug screening methodologies are therefore needed to prioritize agents for clinical testing. In addition to drug targets located in epithelial tumor cells, another list of malignancy-associated targets could be generated by considering targets in tumor-associated stromal and endothelial cells (eg, fibroblast growth factor [FGF], vascular endothelial growth factor [VEGF]), as well as targets related to a systemic reservoir of circulating cells that can be recruited to carcinogenic influence by inflammatory factors such as nuclear factor (NF)kappaB. The complementarities of target-related processes within tumors cells, in the tumor microenvironment, and beyond suggests that there is great potential for multi-targeted approaches that may be more effective than single agents and also less prone to resistance. Additional options, related to drug dose and schedule, remain to be established. As long as multiple agents can be used in combination for optimal effect with acceptable toxicity, the co-targeting of the epithelial cell compartment along with other compartments of oncogenic activity is expected to expand the dimensions of targeted prevention and enhance the overall opportunity to eliminate precancer or cells at risk of eventually transitioning to invasive cancer.
Collapse
Affiliation(s)
- Karen A Johnson
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|