1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Loos NHC, Ferreira Martins ML, Rijmers J, de Jong D, Lebre MC, Tibben M, Beijnen JH, Schinkel AH. Interplay of Ritonavir-Boosted Oral Cabazitaxel with the Organic Anion-Transporting Polypeptide (OATP) Uptake Transporters and Carboxylesterase 1 in Mice. Mol Pharm 2024; 21:1952-1964. [PMID: 38423793 DOI: 10.1021/acs.molpharmaceut.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.
Collapse
Affiliation(s)
- Nancy H C Loos
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | - Jamie Rijmers
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Daniëlle de Jong
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Matthijs Tibben
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
3
|
Sutherland R, Meeson A, Lowes S. Solute transporters and malignancy: establishing the role of uptake transporters in breast cancer and breast cancer metastasis. Cancer Metastasis Rev 2021; 39:919-932. [PMID: 32388639 PMCID: PMC7497311 DOI: 10.1007/s10555-020-09879-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The solute carrier (SLC) superfamily encompasses a large variety of membrane-bound transporters required to transport a diverse array of substrates over biological membranes. Physiologically, they are essential for nutrient uptake, ion transport and waste removal. However, accumulating evidence suggest that up- and/or downregulation of SLCs may play a pivotal role in the pathogenesis of human malignancy. Endogenous substrates of SLCs include oestrogen and its conjugates, the handling of which may be of importance in hormone-dependent cancers. The SLCs play a significant role in the handling of therapeutic agents including anticancer drugs. Differential SLC expression in cancers may, therefore, impact on the efficacy of treatments. However, there is also a small body of evidence to suggest the dysregulated expression of some of these transporters may be linked to cancer metastasis. This review draws on the current knowledge of the roles of SLC transporters in human cancers in order to highlight the potential significance of these solute carriers in breast cancer pathogenesis and treatment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rachel Sutherland
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK. .,Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.
| | - Annette Meeson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK
| | - Simon Lowes
- Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.,Breast Screening and Assessment Unit, Queen Elizabeth Hospital, Gateshead Health NHS Foundation Trust, Gateshead, Sheriff Hill, UK
| |
Collapse
|
4
|
Huo SJ, Wu X, Ye C, Hu MY, Li WJ, Zhang LL, Xiang SY, Yu SQ. In Situ Fluorescence Tracking Toxic Metabolite Mono-2-ethylhexyl phthalate (MEHP) of Di-(2-ethylhexyl) phthalate (DEHP) in HeLa Cells. Chem Res Toxicol 2019; 32:2006-2015. [PMID: 31469264 DOI: 10.1021/acs.chemrestox.9b00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we synthesized a small molecule fluorescent probe for detecting mono-2-ethylhexyl phthalate (MEHP) named MEHP-AF, which formed by MEHP cross-linked with 5-aminofluorescein (5-AF) through amide bond. MEHP-AF had been purified based on the different physicochemical properties of 5-AF with MEHP. MEHP-AF showed fluorescence characteristics coming from 5-AF and liposoluble property coming from MEHP. After physicochemical characterization, a series of biological studies of its action in cells were carried out. The results indicated that MEHP-AF was a fluorescent probe with strong specificity and high sensitivity. It can visibly track the location of MEHP in HeLa cell or subcellular levels under confocal laser scanning microscopy in situ. This novel fluorescent probe is expected to use for studying its intracellular behavior at the cell level, especially for investigating the interaction between MEHP and cellular molecules.
Collapse
Affiliation(s)
- Shao-Jie Huo
- College of Life Sciences , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Xiu Wu
- College of Life Sciences , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Chong Ye
- College of Life Sciences , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Meng-Yuan Hu
- College of Food and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Wen-Jie Li
- College of Food and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Ling-Ling Zhang
- College of Food and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Su-Yun Xiang
- College of Life Sciences , Nanjing Normal University , Nanjing 210046 , The People's Republic of China.,College of Food and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| | - Shu-Qin Yu
- College of Life Sciences , Nanjing Normal University , Nanjing 210046 , The People's Republic of China
| |
Collapse
|
5
|
Schulte RR, Ho RH. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 2019; 95:490-506. [PMID: 30782852 DOI: 10.1124/mol.118.114314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.
Collapse
Affiliation(s)
- Rachael R Schulte
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Karakus E, Zahner D, Grosser G, Leidolf R, Gundogdu C, Sánchez-Guijo A, Wudy SA, Geyer J. Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6). Front Pharmacol 2018; 9:941. [PMID: 30186172 PMCID: PMC6111516 DOI: 10.3389/fphar.2018.00941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/02/2018] [Indexed: 02/01/2023] Open
Abstract
Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. In conclusion: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.
Collapse
Affiliation(s)
- Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Zahner
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Cemal Gundogdu
- Department of Pathology, Private Practitioner of Medicine, Erzurum, Turkey
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F. Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
8
|
Sewda K, Coppola D, Enkemann S, Yue B, Kim J, Lopez AS, Wojtkowiak JW, Stark VE, Morse B, Shibata D, Vignesh S, Morse DL. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget 2017; 7:17773-89. [PMID: 26894861 PMCID: PMC4951249 DOI: 10.18632/oncotarget.7402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Collapse
Affiliation(s)
- Kamini Sewda
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Steven Enkemann
- Department of Molecular Genomics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Binglin Yue
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis S Lopez
- Department of Tissue Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Valerie E Stark
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brian Morse
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivakumar Vignesh
- Division of Gastroenterology and Hepatology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Skwara P, Schömig E, Gründemann D. A novel mode of operation of SLC22A11: Membrane insertion of estrone sulfate versus translocation of uric acid and glutamate. Biochem Pharmacol 2016; 128:74-82. [PMID: 28027879 DOI: 10.1016/j.bcp.2016.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Abstract
Estrone sulfate alias estrone-3-sulfate (E3S) is considerably larger and much more hydrophobic than typical substrates of SLC22 transporters. It is puzzling that many otherwise unrelated transporters have been reported to transport E3S. Here we scrutinized the mechanism of transport of E3S by SLC22A11 (alias OAT4), by direct comparison with uric acid (UA), an important physiological substrate. Heterologous expression of SLC22A11 in human 293 cells gave rise to a huge unidirectional efflux of glutamate (Glu) and aspartate, as determined by LC-MS/MS. The uptake of E3S was 20-fold faster than the uptake of UA. Yet, the outward transport of Glu was inhibited by extracellular E3S, but not by UA. The release of E3S after preloading was trans-stimulated by extracellular dehydroepiandrosterone sulfate (DHEAS), but neither by UA nor 6-carboxyfluorescein (6CF). The equilibrium accumulation of E3S was enhanced 3-fold by replacement of chloride with gluconate, but the opposite effect was observed for UA. These results establish that SLC22A11 provides entirely different transport mechanisms for E3S and UA. Therefore, E3S must not be used as a substitute for UA to assay the function of SLC22A11. In equilibrium accumulation experiments, the transporter-mediated uptake was a linear function of the concentration of UA and 6CF. By contrast, in the same concentration range the graph for E3S was hyperbolic. This suggests that SLC22A11 inserts E3S into a small volume with limited capacity, the plasma membrane. Our data support the notion that the reverse process, extraction from the membrane, is also catalyzed by the carrier.
Collapse
Affiliation(s)
- Peter Skwara
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Edgar Schömig
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany.
| |
Collapse
|
10
|
Liu X, Baarsma H, Thiam C, Montrone C, Brauner B, Fobo G, Heier JS, Duscha S, Königshoff M, Angeli V, Ruepp A, Campillos M. Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens. Cell Chem Biol 2016; 23:1302-1313. [DOI: 10.1016/j.chembiol.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/10/2016] [Accepted: 08/05/2016] [Indexed: 01/29/2023]
|
11
|
Role of OATP transporters in steroid uptake by prostate cancer cells in vivo. Prostate Cancer Prostatic Dis 2016; 20:20-27. [PMID: 27645128 PMCID: PMC5762123 DOI: 10.1038/pcan.2016.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/26/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiologic and in vitro studies suggest that SLCO-encoded organic anion transporting polypeptide (OATP) transporters influence the response of prostate cancer (PCa) to androgen deprivation by altering intratumor androgens. We have previously shown that castration-resistant metastases express multiple SLCO transporters at significantly higher levels than primary PCa, suggesting that OATP-mediated steroid transport is biologically relevant in advanced disease. However, whether OATP-mediated steroid transport can actually modify prostate tumor androgen levels in vivo has never been demonstrated. METHODS We sought to determine whether OATP-mediated steroid transport can measurably alter PCa androgen levels in vivo. We evaluated the uptake of dehydroepiandrosterone (DHEAS), E1S and testosterone in LNCaP cells engineered to express OATP1B1, 1B3, 2B1 or 4A1. We measured the uptake via administration of tritiated steroids to castrate mice bearing vector control or OATP1B1-, 2B1- or 4A1-expressing xenografts. We treated tumor-bearing mice with DHEAS and testosterone at physiologically relevant levels and measured intratumor accumulation of administered steroids by mass spectrometry. RESULTS OATP1B1- and 2B-expressing xenografts each showed a threefold increase in tritiated-DHEAS uptake vs vector controls (P=0.002 and P=0.036, respectively). At circulating DHEAS levels similar to those in abiraterone-treated men (~15 μg dl-1), OATP1B1- and 2B1-expressing xenografts showed a 3.9-fold (P=0.057) and 1.9-fold (P=0.048) increase in tumor accumulation of DHEAS and a 1.6-fold (P=0.057) and 2.7-fold (P=0.095) increase in DHEA, respectively. At the substantial circulating testosterone levels found in eugonadal men, a consistent effect of OATP1B1, 2B1 or 4A1 on testosterone uptake in vivo was not detected. CONCLUSIONS OATP transporters measurably alter DHEAS uptake and intratumor androgen levels in prostate tumors in vivo, even at circulating androgen levels achieved in abiraterone-treated patients. These novel data emphasize the continued need to inhibit ligand-mediated androgen receptor signaling in PCa tumors, and support prospective evaluation of studies designed to test inhibition of OATP-mediated DHEAS uptake and utilization.
Collapse
|
12
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
13
|
Thakkar N, Lockhart AC, Lee W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. AAPS JOURNAL 2015; 17:535-45. [PMID: 25735612 DOI: 10.1208/s12248-015-9740-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022]
Abstract
The superfamily of organic anion-transporting polypeptides (OATPs, gene symbol SLCO) includes important transporters handling a variety of endogenous and xenobiotic substrates. Currently, 11 human OATPs are known and their substrates include endogenous hormones and their conjugates, anticancer drugs, and imaging agents. The contribution of OATPs to the in vivo disposition of these substrates has been extensively investigated. An accumulating body of evidence also indicates that the expression of some OATPs may be up- or downregulated in several types of cancers, suggesting potential pathogenic roles during the development and progression of cancer. Given that the role of OATPs in handling cancer therapeutics has been already covered by several excellent reviews, this review will focus on the recent progresses on the topic, in particular the role of OATPs in the disposition of anticancer drugs, the impact of OATP genetic variations on the function of OATPs, and the OATPs differentially expressed in cancer and their potential roles in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Nilay Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
14
|
Organic anion transporting polypeptide 2B1 expression correlates with uptake of estrone-3-sulfate and cell proliferation in estrogen receptor-positive breast cancer cells. Drug Metab Pharmacokinet 2014; 30:133-41. [PMID: 25857231 DOI: 10.1016/j.dmpk.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/29/2022]
Abstract
Estrone-3-sulfate (E1S) is thought to be a major estrogen precursor in estrogen receptor (ER)-positive breast cancer. Since E1S is a hydrophilic compound, the uptake of E1S into cancer cells is probably mediated by transporters, such as organic anion-transporting polypeptide (OATP, SLCO) family. In this study, we investigated the relationship between expression of OATP2B1 and cell proliferation in ER-positive breast cancer. Cell-based assays were carried out in MCF-7 cells both with and without overexpression of OATP2B1. Normal breast and tumor tissues were collected and used in this study. Cell proliferation, ER-mediated transcriptional activities and estradiol secretion were stimulated by addition of E1S to the culture medium of MCF-7 cells. These stimulatory effects were significantly greater in MCF-7 cells overexpressing OATP2B1 than in control cells. The expression level of SLCO2B1 mRNA was significantly correlated with histological grade, Ki-67 labelling index and mRNA expression of steroid sulfatase. The expression level of SLCO2B1 mRNA in luminal B-like cancers was higher than that in luminal A-like cancers. Uptake of E1S resulted in down-regulation of ERα protein and induction of Ki-67 in MCF-7 cells. The present study suggests that OATP2B1 is involved in cell proliferation by increasing the amount of estrogen in ER-positive breast cancer cells.
Collapse
|
15
|
Cho E, Montgomery RB, Mostaghel EA. Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology 2014; 155:4124-32. [PMID: 25147980 PMCID: PMC4298565 DOI: 10.1210/en.2014-1337] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Androgens play a critical role in the development and progression of prostate cancer (PCa), and androgen deprivation therapy via surgical or medical castration is front-line therapy for patients with advanced PCa. However, intratumoral testosterone levels are elevated in metastases from patients with castration-resistant disease, and residual intratumoral androgens have been implicated in mediating ligand-dependent mechanisms of androgen receptor activation. The source of residual tissue androgens present despite castration has not been fully elucidated, but proposed mechanisms include uptake and conversion of adrenal androgens, such as dehdroepiandrosterone to testosterone and dihydrotestosterone, or de novo androgen synthesis from cholesterol or progesterone precursors. In this minireview, we discuss the emerging evidence that suggests a role for specific transporters in mediating transport of steroids into or out of prostate cells, thereby influencing intratumoral androgen levels and PCa development and progression. We focus on the solute carrier and ATP binding cassette gene families, which have the most published data for a role in PCa-related steroid transport, and review the potential impact of genetic variation on steroid transport activity and PCa outcomes. Continued assessment of transport activity in PCa models and human tumor tissue is needed to better delineate the different roles these transporters play in physiologic and neoplastic settings, and in order to determine whether targeting the uptake of steroid substrates by specific transporters may be a clinically feasible therapeutic strategy.
Collapse
Affiliation(s)
- Eunpi Cho
- School of Medicine (E.C., R.B.M.), University of Washington, Seattle, Washington 98195; and Division of Clinical Research (E.A.M.), Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | | |
Collapse
|
16
|
Nakanishi T, Tamai I. Putative roles of organic anion transporting polypeptides (OATPs) in cell survival and progression of human cancers. Biopharm Drug Dispos 2014; 35:463-84. [DOI: 10.1002/bdd.1915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
17
|
Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, Beijnen JH, Schinkel AH. Human OATP1B1, OATP1B3 and OATP1A2 can mediate thein vivouptake and clearance of docetaxel. Int J Cancer 2014; 136:225-33. [DOI: 10.1002/ijc.28970] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Dilek Iusuf
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Jeroen J.M.A. Hendrikx
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Anita van Esch
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Evita van de Steeg
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Els Wagenaar
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Alfred H. Schinkel
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
18
|
Banerjee N, Miller N, Allen C, Bendayan R. Expression of membrane transporters and metabolic enzymes involved in estrone-3-sulphate disposition in human breast tumour tissues. Breast Cancer Res Treat 2014; 145:647-61. [PMID: 24831777 DOI: 10.1007/s10549-014-2990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Two-thirds of newly diagnosed hormone-dependent (HR?) breast cancers are detected in post-menopausal patients where estrone-3-sulphate (E3S) is the predominant source for tumour estradiol. Understanding intra-tumoral fate of E3S would facilitate in the identification of novel molecular targets for HR? post-menopausal breast cancer patients. Hence this study investigates the clinical expression of (i) organic anion-transporting polypeptides (OATPs), (ii) multidrug resistance protein (MRP-1), breast cancer resistance proteins (BCRP), and (iii) sulphatase (STS), 17β-hydroxysteroid dehydrogenase (17β-HSD-1), involved in E3S uptake, efflux and metabolism, respectively. Fluorescent and brightfield images of stained tumour sections (n = 40) were acquired at 4× and 20× magnification, respectively. Marker densities were measured as the total area of positive signal divided by the surface area of the tumour section analysed and was reported as % area (ImageJ software). Tumour, stroma and non-tumour tissue areas were also quantified (Inform software), and the ratio of optical intensity per histologic area was reported as % area/tumour, % area/stroma and % area/non-tumour. Functional role of OATPs and STS was further investigated in HR? (MCF-7, T47-D, ZR-75) and HR-(MDA-MB-231) cells by transport studies conducted in the presence or absence of specific inhibitors. Amongst all the transporters and enzymes, OATPs and STS have significantly (p < 0.0001) higher expression in HR? tumour sections with highest target signals obtained from the tumour regions of the tissues. Specific OATP-mediated E3S uptake and STS-mediated metabolism were also observed in all HR? breast cancer cells. These observations suggest the potential of OATPs as novel molecular targets for HR? breast cancers.
Collapse
Affiliation(s)
- Nilasha Banerjee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | | | | | |
Collapse
|
19
|
Dayal JHS, Cole CL, Pourreyron C, Watt SA, Lim YZ, Salas-Alanis JC, Murrell DF, McGrath JA, Stieger B, Jahoda C, Leigh IM, South AP. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. J Cell Sci 2014; 127:740-51. [PMID: 24357722 PMCID: PMC3924202 DOI: 10.1242/jcs.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022] Open
Abstract
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Polarity
- Coculture Techniques
- Collagen Type VII/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epidermolysis Bullosa Dystrophica/genetics
- Epidermolysis Bullosa Dystrophica/metabolism
- Epidermolysis Bullosa Dystrophica/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha6/genetics
- Integrin alpha6/metabolism
- Keratinocytes
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Promoter Regions, Genetic
- Protein Transport
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Solute Carrier Organic Anion Transporter Family Member 1B3
- Transcription, Genetic
- Tumor Cells, Cultured
- beta Catenin/genetics
- beta Catenin/metabolism
- Kalinin
Collapse
Affiliation(s)
- Jasbani H. S. Dayal
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Clare L. Cole
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Celine Pourreyron
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen A. Watt
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Yok Zuan Lim
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Dedee F. Murrell
- St George Hospital, University of New South Wales, Sydney, 2217 NSW, Australia
| | - John A. McGrath
- King's College School of Medicine, St Thomas' Hospital, Guys Campus, London WC2R 2LS, UK
| | - Bruno Stieger
- Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | | | - Irene M. Leigh
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P. South
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
20
|
Ogane N, Yasuda M, Kameda Y, Yokose T, Kato H, Itoh A, Nishino S, Hashimoto Y, Kamoshida S. Prognostic value of organic anion transporting polypeptide 1B3 and copper transporter 1 expression in endometrial cancer patients treated with paclitaxel and carboplatin. Biomed Res 2014; 34:143-51. [PMID: 23782748 DOI: 10.2220/biomedres.34.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Paclitaxel and carboplatin (TC) chemotherapy is an effective and well-tolerated regimen against advanced endometrial cancer. Organic anion transporting polypeptide 1B3 (OATP1B3) and copper transporter 1 (CTR1) are critical for the uptake of paclitaxel and carboplatin, respectively. This study aimed to address the prognostic impact of OATP1B3 and CTR1 in endometrial cancer patients treated with adjuvant TC chemotherapy. We immunohistochemically evaluated the expressions of OATP1B3 and CTR1 in 47 stage III endometrial cancers. The high expression levels of OATP1B3 were significantly correlated with type I tumor (P = 0.0005). In univariate analysis, high expression levels of OATP1B3 (P = 0.047) and CTR1 (P = 0.009) were significantly associated with longer disease-free survival (DFS) and longer overall survival (OS), respectively. The patients with tumors showing high expression levels of at least one of OATP1B3 and CTR1 had potentially longer DFS (P = 0.058) and significantly longer OS (P = 0.003) sin the univariate analysis. Combined OATP1B3/CTR1 expression was the sole independent prognostic factor for longer OS in the multivariate analysis (P = 0.013). Our findings suggest that combined OATP1B3/CTR1 expression is a possible predictive/prognostic factor for a good outcome in stage III endometrial cancer patients treated with adjuvant TC chemotherapy.
Collapse
Affiliation(s)
- Naoki Ogane
- Department of Pathology, Kanagawa Cancer Center Hospital, 1-1-2 Nakao, Asahi, Yokohama 241-0815, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mostafa YA, Taylor SD. Steroid derivatives as inhibitors of steroid sulfatase. J Steroid Biochem Mol Biol 2013; 137:183-98. [PMID: 23391659 DOI: 10.1016/j.jsbmb.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Sulfated steroids function as a storage reservoir of biologically active steroid hormones. The sulfated steroids themselves are biologically inactive and only become active in vivo when they are converted into their desulfated (unconjugated) form by the enzyme steroid sulfatase (STS). Inhibitors of STS are considered to be potential therapeutics for the treatment of steroid-dependent cancers such as breast, prostate and endometrial cancer. The present review summarizes steroid derivatives as inhibitors of STS covering the literature from the early years of STS inhibitor development to October of 2012. A brief discussion of the function, structure and mechanism of STS and its role in estrogen receptor-positive (ER+) hormone-dependent breast cancer is also presented. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Yaser A Mostafa
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | |
Collapse
|
22
|
Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:863539. [PMID: 23431456 PMCID: PMC3574750 DOI: 10.1155/2013/863539] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/16/2023]
Abstract
Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Collapse
|
23
|
Balogh LM, Lai Y. Applications of Targeted Proteomics in ADME for IVIVE. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions. Biochem Pharmacol 2012; 84:1070-7. [PMID: 22864060 DOI: 10.1016/j.bcp.2012.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
The biological mechanisms underlying castration resistance of prostate cancer are not fully understood. In the present study, we examined the role of organic anion transporting polypeptides (OATPs) as importers of dehydroepiandrosterone sulfate (DHEAS) into cells to support growth under androgen-depleted conditions. Cell growth and mRNA expression of OATP genes were studied in human prostate cancer LNCaP and 22Rv1 cells under androgen-depleted conditions. The stimulatory effect of DHEAS on cell growth was investigated in LNCaP cells in which OATP1A2 had been silenced. Growth of both cell lines was stimulated by DHEAS and the effect was attenuated by STX64, an inhibitor of steroid sulfatase which can covert DHEAS to DHEA. OATP1A2 mRNA expression was increased most prominently among various genes tested in LNCaP cells grown in androgen-depleted medium. Similar results were obtained with 22Rv1 cells. Furthermore, the characteristics of [(3)H]DHEAS uptake by LNCaP cells were consistent with those of OATP-mediated transport. Knockdown of OATP1A2 in LNCaP cells resulted in loss of the DHEAS sensitivity of cell growth. Our results suggest that enhanced OATP1A2 expression is associated with adaptive cell growth of prostate cancer cells under androgen-depleted conditions. Thus, OATP1A2 may be a pharmacological target for prostate cancer treatment.
Collapse
|
25
|
Banerjee N, Allen C, Bendayan R. Differential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells. J Pharmacol Exp Ther 2012; 342:510-9. [PMID: 22588260 DOI: 10.1124/jpet.112.192344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate the differential expression and function of organic anion-transporting polypeptides (OATPs) in breast epithelial and breast cancer cells. Estrone-3-sulfate (E3S), a substrate for 7 of 11 OATPs, is a predominant source of tumor estrogen in postmenopausal, hormone-dependent patients with breast cancer. Overexpression of certain OATPs (e.g., OATP1A2) reported in breast tumor tissues compared with surrounding normal tissues could contribute toward two to three times higher tumoral E3S concentration. Little is known about expression and function of other OATP family members among breast epithelial and breast cancer cells. We therefore compared gene and protein expression of seven OATPs (OATP1A2, OATP1B1, OATP1B3, OATP1C1, OATP2B1, OATP3A1, and OATP4A1) in immortalized breast epithelial cells (MCF10A), hormone-dependent breast cancer cells (MCF7), and hormone-independent breast cancer cells (MDA/LCC6-435, MDA-MB-231, and MDA-MB-468) by quantitative polymerase chain reaction and immunoblotting, respectively. Expression of solute carrier superfamily encoding for OATPs (SLCO) 1A2, 1B1, 1B3, 2B1, and 3A1 is exclusive, similar, or significantly higher in cancer cells compared with MCF10A cells. Protein expression of OATPs is found to be either exclusive or higher in cancer cells compared with MCF10A cells. Specificity of OATP-mediated E3S uptake is observed only in cancer cells, with the highest total uptake in MCF7 cells. Transport kinetics of E3S uptake demonstrates transport efficiency that is 10 times greater in the MCF7 cells than in the hormone-independent cells. These data suggest that OATPs could be a novel therapeutic target for hormone-dependent breast cancers, particularly in postmenopausal patients, where the major source of tumor estrogen is E3S.
Collapse
Affiliation(s)
- Nilasha Banerjee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | | | | |
Collapse
|
26
|
Nagai M, Furihata T, Matsumoto S, Ishii S, Motohashi S, Yoshino I, Ugajin M, Miyajima A, Matsumoto S, Chiba K. Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells. Biochem Biophys Res Commun 2012; 418:818-23. [PMID: 22326869 DOI: 10.1016/j.bbrc.2012.01.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/28/2022]
Abstract
Organic anion transporting polypeptide 1B3 (OATP1B3) is a hepatocyte plasma membrane protein that transports various endogenous and xenobiotic compounds. Although it is exclusively expressed in the human liver under normal conditions, OATP1B3 can be also expressed in various human cancer tissues that have been associated with prognosis and clinical outcomes. However, despite the potential significance of the latter finding, no experimental evidence addressing the molecular entity of cancer-associated OATP1B3 has been provided to date. In this paper, we report the identification of a new OATP1B3 mRNA isoform expressed in human colon and lung cancer tissues, which we named cancer-type OATP1B3 (Ct-OATP1B3). Our results also make known a previously unidentified transcription start site and an alternative promoter region, localized at intron 2, from which Ct-OATP1B3 mRNA is generated. Isoform specific mRNA quantification showed that the Ct-OATP1B3 mRNA level was strikingly higher than that of Lt-OATP1B3 mRNA in human cancer tissues. In addition, the results showed that the translation occurred at three out of four open reading frames. To summarize, our results clearly demonstrate that the newly-identified Ct-OATP1B3 (but not Lt-OATP1B3) is the primary mRNA isoform, at least in the human cancerous samples we have examined. In line with the possibility that its translation products play important biological roles in cancer cells, we strongly believe that the existence of Ct-OATP1B3 should be taken into account during future studies of OATP1B3 associated with cancer prognosis and clinical outcomes.
Collapse
Affiliation(s)
- Miki Nagai
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
28
|
Poster Award Competition Finalist Abstracts. Drug Metab Rev 2011. [DOI: 10.3109/03602532.2011.567807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|