1
|
Lin H, Su M, Wen C, Tang Y, Li H, Wu Y, Ge RS, Li XW, Lin H. Chalcones from plants cause toxicity by inhibiting human and rat 11β-hydroxysteroid dehydrogenase 2: 3D-quantitative structure-activity relationship (3D-QSAR) and in silico docking analysis. Food Chem Toxicol 2024; 184:114415. [PMID: 38141941 DOI: 10.1016/j.fct.2023.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11β-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11β-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) μM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11β-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) μM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11β-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11β-HSD2. In conclusion, many chalcones inhibit human and rat 11β-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11β-HSD2.
Collapse
Affiliation(s)
- Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Chao Wen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Yandan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xing-Wang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China.
| | - Han Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China.
| |
Collapse
|
2
|
Ramser A, Hawken R, Greene E, Okimoto R, Flack B, Christopher CJ, Campagna SR, Dridi S. Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology. Metabolites 2023; 13:metabo13050662. [PMID: 37233703 DOI: 10.3390/metabo13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, AR 72761, USA
| | | | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Zhuang Q, Huang S, Li Z. Prospective role of 3βHSD1 in prostate cancer precision medicine. Prostate 2023; 83:619-627. [PMID: 36842160 DOI: 10.1002/pros.24504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Prostate cancer is addicted to androgens. The steroidogenic enzyme 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) recognizes pregnenolone, dehydroepiandrosterone (DHEA), and steroidal medicine abiraterone as substrates to accelerate disease progression. METHODS References for this review were identified through searches of PubMed with the search terms "prostate cancer", "HSD3B1", and "3bHSD1" from 1990 until June, 2022. RESULTS Genotype of 3βHSD1 has been reported to correlate with tumor aggressiveness of advanced prostate cancer in multiple clinical scenarios. The ethnic differences and limitations of using 3βHSD1 genotype as a prognostic biomarker have been discussed here. The activity of 3βHSD1 increases in patients treated with abiraterone and enzalutamide, giving rise to treatment resistance. Further elucidation of 3βHSD1 regulatory mechanisms will shed light on more approaches for disease intervention. We also review the recent advance on 3βHSD1 inhibitors and targeting 3βHSD1 for prostate cancer management. Novel 3βHSD1 inhibitors will be needed to provide additional options for prostate cancer management. CONCLUSION 3βHSD1 is both a predictive biomarker and a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Huang
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Hou Z, Huang S, Mei Z, Chen L, Guo J, Gao Y, Zhuang Q, Zhang X, Tan Q, Yang T, Liu Y, Chi Y, Qi L, Jiang T, Shao X, Wu Y, Xu X, Qin J, Ren R, Tang H, Wu D, Li Z. Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Cell Rep Med 2022; 3:100561. [PMID: 35492874 PMCID: PMC9040187 DOI: 10.1016/j.xcrm.2022.100561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Prostate cancer continuously progresses following deprivation of circulating androgens originating from the testis and adrenal glands, indicating the existence of oncometabolites beyond androgens. In this study, mass-spectrometry-based screening of clinical specimens and a retrospective analysis on the clinical data of prostate cancer patients indicate the potential oncogenic effects of progesterone in patients. High doses of progesterone activate canonical and non-canonical androgen receptor (AR) target genes. Physiological levels of progesterone facilitate cell proliferation via GATA2. Inhibitors of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) has been discovered and shown to suppress the generation of progesterone, eliminating its transient and accumulating oncogenic effects. An increase in progesterone is associated with poor clinical outcomes in patients and may be used as a predictive biomarker. Overall, we demonstrate that progesterone acts as an oncogenic hormone in prostate cancer, and strategies to eliminate its oncogenic effects may benefit prostate cancer patients. High doses of progesterone activate canonical and non-canonical AR signaling Progesterone of physiological levels exerts its chronic oncogenic effect via GATA2 Targeting 3βHSD1 to suppress progesterone synthesis blocks its oncogenic effects Serum progesterone might be a predictive biomarker for abiraterone response
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zejie Mei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuanyuan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuebin Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lifengrong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ting Jiang
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Xuefeng Shao
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Yan Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
5
|
Hou Z, Huang S, Li Z. Androgens in prostate cancer: A tale that never ends. Cancer Lett 2021; 516:1-12. [PMID: 34052327 DOI: 10.1016/j.canlet.2021.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Androgens play an essential role in prostate cancer. Clinical treatments that target steroidogenesis and the androgen receptor (AR) successfully postpone disease progression. Abiraterone and enzalutamide, the next-generation androgen receptor pathway inhibitors (ARPI), emphasize the function of the androgen-AR axis even in castration-resistant prostate cancer (CRPC). However, with the increased incidence in neuroendocrine prostate cancer (NEPC) showing resistance to ARPI, the importance of androgen-AR axis in further disease management remains elusive. Herein we review the steroidogenic pathways associated with different disease stages and discuss the potential targets for disease management after manifesting resistance to abiraterone and enzalutamide.
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
6
|
Chang YC, Lin CH, Lin JC, Cheng SP, Chen SN, Liu CL. Inhibition of 3β-Hydroxysteroid Dehydrogenase Type 1 Suppresses Interleukin-6 in Breast Cancer. J Surg Res 2019; 241:8-14. [PMID: 31004874 DOI: 10.1016/j.jss.2019.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recently, we demonstrated that the expression of 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) in breast cancer is associated with shorter recurrence-free survival, and genetic or pharmacologic inhibition of HSD3B1 reduced colony formation and xenograft growth. However, the mechanisms are unclear. METHODS Triple-negative MDA-MB-231 and BT-20 breast cancer cells underwent HSD3B1 silencing. Microarray and bioinformatic analysis were performed. The interleukin-6 (IL-6) expression and secretion were evaluated using real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Clonogenic ability and cell viability were determined in the absence or presence of recombinant IL-6. RESULTS Functional and pathway enrichment analyses showed that HSD3B1 silencing modulates the expression of several growth factors and cytokines. Cells transfected with HSD3B1-targeting small interfering RNA or treated with an HSD3B1 inhibitor (trilostane) had decreased IL-6 expression and secretion. HSD3B1 inhibition reduced colony formation, which was partially rescued by IL-6 supplementation. The HSD3B1 knockdown enhanced paclitaxel sensitivity, and IL-6 treatment partially reversed the augmented cytotoxicity. CONCLUSIONS Our findings suggest that the therapeutic potential of targeting HSD3B1 is in part mediated by IL-6 suppression.
Collapse
Affiliation(s)
- Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Jiunn-Chang Lin
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| |
Collapse
|
7
|
Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol 2018; 465:4-26. [PMID: 28865807 PMCID: PMC6565845 DOI: 10.1016/j.mce.2017.08.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Androgens play an important role in metabolic homeostasis and reproductive health in both men and women. Androgen signalling is dependent on androgen receptor activation, mostly by testosterone and 5α-dihydrotestosterone. However, the intracellular or intracrine activation of C19 androgen precursors to active androgens in peripheral target tissues of androgen action is of equal importance. Intracrine androgen synthesis is often not reflected by circulating androgens but rather by androgen metabolites and conjugates. In this review we provide an overview of human C19 steroid biosynthesis including the production of 11-oxygenated androgens, their transport in circulation and uptake into peripheral tissues. We conceptualise the mechanisms of intracrinology and review the intracrine pathways of activation and inactivation in selected human tissues. The contribution of liver and kidney as organs driving androgen inactivation and renal excretion are also highlighted. Finally, the importance of quantifying androgen metabolites and conjugates to assess intracrine androgen production is discussed.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Pham JH, Will CM, Mack VL, Halbert M, Conner EA, Bucholtz KM, Thomas JL. Structure-function relationships for the selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 by a novel androgen analog. J Steroid Biochem Mol Biol 2017; 174:257-264. [PMID: 29031687 DOI: 10.1016/j.jsbmb.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 11/26/2022]
Abstract
3β-Hydroxysteroid dehydrogenase type 1 (3β-HSD1) is selectively expressed in human placenta, mammary glands and breast tumors in women. Human 3β-HSD2 is selectively expressed in adrenal glands and ovaries. Based on AutoDock 3 and 4 results, we have exploited key differences in the amino acid sequences of 3β-HSD1 (Ser194, Arg195) and 3β-HSD2 (Gly194, Pro195) by designing a selective inhibitor of 3β-HSD1. 2,16-Dicyano-4,5-epoxy-androstane-3,17-dione (16-cyano-17-keto-trilostane or DiCN-AND) was synthesized in a 4-step procedure from androstenedione. In purified 3β-HSD inhibition studies, DiCN-AND competitively inhibited 3β- HSD1 with Ki=4.7μM and noncompetitively inhibited 3β-HSD2 with a 6.5-fold higher Ki=30.7μM. We previously reported similar isoenzyme-specific inhibition profiles for trilostane. Based on our docking results, we created, expressed and purified the chimeric S194G-1 mutant of 3β-HSD1. Trilostane inhibited S194G-1 (Ki=0.67μM) with a noncompetitive mode compared to its 6.7-fold higher affinity, competitive inhibition of 3β-HSD1 (Ki=0.10μM). DiCN-AND inhibited S194G-1 with a 6.3-fold higher Ki (29.5μM) than measured for 3β-HSD1 (Ki=4.7μM) but with the same competitive mode for both enzyme species. Since DiCN-AND noncompetitively inhibits 3β-HSD2, which has the Gly194 and Pro195 of 3β-HSD2 in place of the Ser194 and Arg195 in 3β-HSD1, this suggests that Arg195 alone in 3β-HSD1 or S194G-1 is required to bind DiCN-AND in the substrate binding site (competitive inhibition). However, both Ser194 and Arg195 are required to bind trilostane in the 3β-HSD1 substrate site based on its noncompetitive inhibition of S194G-1 and 3β-HSD2. In support of this hypothesis, DiCN-AND inhibited our chimeric R195P-1 mutant noncompetitively with a Ki=41.3μM (similar to the 3β-HSD2 inhibition profile). Since DiCN-AND competitively inhibited S194G-1 that still contains R195 but noncompetitively inhibited R195P-1 that still contains S194, our data provides strong evidence that the Arg195 being mutated to Pro195 (as present in 3β-HSD2) shifts the inhibition mode from competitive to noncompetitive in 3β-HSD1. This supports the key role of Arg195 in 3β-HSD1 for the high affinity, competitive binding of the trilostane analogs. Our new structure/function information for the design of targeted 3β-HSD1 inhibitors may lead to important new treatments for the prevention of spontaneous premature birth.
Collapse
Affiliation(s)
- Jenny H Pham
- Department of Biomedical Sciences, Macon, GA, 31207, USA
| | - Catherine M Will
- Department of Chemistry, Mercer University, Macon, GA, 31207, USA
| | - Vance L Mack
- Department of Biomedical Sciences, Macon, GA, 31207, USA
| | - Matthew Halbert
- Department of Chemistry, Mercer University, Macon, GA, 31207, USA
| | | | - Kevin M Bucholtz
- Department of Chemistry, Mercer University, Macon, GA, 31207, USA
| | - James L Thomas
- Department of Biomedical Sciences, Macon, GA, 31207, USA; Department of Ob-Gyn, Mercer University School of Medicine, Macon, GA, 31207, USA.
| |
Collapse
|
9
|
Tochitani T, Yamashita A, Matsumoto I, Kouchi M, Fujii Y, Miyawaki I, Yamada T, Bando K. Usefulness of Simultaneous Measurement of Plasma Steroids, Including Precursors, for the Evaluation of Drug Effects on Adrenal Steroidogenesis in Rats. Toxicol Pathol 2017; 45:756-763. [PMID: 29046138 DOI: 10.1177/0192623317730416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the usefulness of simultaneous measurement of plasma steroids, including precursors, for the evaluation of drug effects on adrenal steroidogenesis in vivo. Plasma concentrations of corticosterone and its precursors were examined in rats dosed with compounds that affect adrenal steroidogenesis via different modes of action as well as the relationships of the changes with blood chemistry and adrenal histopathology. Male rats were dosed with tricresyl phosphate, aminoglutethimide, trilostane (TRL), metyrapone (MET), ketoconazole (KET), or mifepristone for 7 days. In the TRL, MET, and KET groups, precursor levels were markedly increased, while there were no significant changes in the corticosterone level, suggesting that the precursors are more sensitive biomarkers to detect the effect on adrenal steroidogenesis. Also, the precursors with increased levels were those that are normally metabolized by the inhibited enzymes, reflecting the modes of action of the compounds. In addition, different patterns of changes were observed in blood chemistry and histopathology, supporting the mechanism suggested by the steroid changes. These results show that simultaneous measurement of plasma steroids, including precursors, can be a valuable method to sensitively evaluate drug effects on adrenal steroidogenesis and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Tomoaki Tochitani
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Akihito Yamashita
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izumi Matsumoto
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Mami Kouchi
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Yuta Fujii
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izuru Miyawaki
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Toru Yamada
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Kiyoko Bando
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| |
Collapse
|
10
|
Chang YC, Chen CK, Chen MJ, Lin JC, Lin CH, Huang WC, Cheng SP, Chen SN, Liu CL. Expression of 3β-Hydroxysteroid Dehydrogenase Type 1 in Breast Cancer is Associated with Poor Prognosis Independent of Estrogen Receptor Status. Ann Surg Oncol 2017; 24:4033-4041. [DOI: 10.1245/s10434-017-6000-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 01/11/2023]
|
11
|
Jopp M, Becker J, Lerch M, Miska A, Hausmann H, Neiger R, Schindler S. Crystallographic Characterization of Trilostane and Derivatives. ChemistrySelect 2017. [DOI: 10.1002/slct.201601976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Melanie Jopp
- Institut für Anorganische und Analytische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Jonathan Becker
- Institut für Anorganische und Analytische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Markus Lerch
- Institut für Anorganische und Analytische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Andreas Miska
- Institut für Anorganische und Analytische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Heike Hausmann
- Institut für Organische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Reto Neiger
- Klinik für Kleintiere, Innere Medizin und Chirurgie; Justus-Liebig-Universität Gießen; Frankfurter Straße 126 35392 Gießen Germany
| | - Siegfried Schindler
- Institut für Anorganische und Analytische Chemie; Justus-Liebig-Universität Gießen; Heinrich-Buff-Ring 17 35392 Gießen Germany
| |
Collapse
|
12
|
Konosu-Fukaya S, Nakamura Y, Satoh F, Felizola SJA, Maekawa T, Ono Y, Morimoto R, Ise K, Takeda KI, Katsu K, Fujishima F, Kasajima A, Watanabe M, Arai Y, Gomez-Sanchez EP, Gomez-Sanchez CE, Doi M, Okamura H, Sasano H. 3β-Hydroxysteroid dehydrogenase isoforms in human aldosterone-producing adenoma. Mol Cell Endocrinol 2015; 408:205-12. [PMID: 25458695 PMCID: PMC4821076 DOI: 10.1016/j.mce.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/29/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022]
Abstract
It has become important to evaluate the possible involvement of 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) and 2 (HSD3B2) isoforms in aldosterone-producing adenoma (APA). In this study, we studied 67 and 100 APA cases using real-time quantitative PCR (qPCR) and immunohistochemistry, respectively. Results of qPCR analysis demonstrated that HSD3B2 mRNA was significantly more abundant than HSD3B1 mRNA (P < 0.0001), but only HSD3B1 mRNA significantly correlated with CYP11B2 (aldosterone synthase) mRNA (P <0.0001) and plasma aldosterone concentration (PAC) of the patients (P <0.0001). Results of immunohistochemistry subsequently revealed that HSD3B2 immunoreactivity was detected in the great majority of APA but a significant correlation was also detected between HSD3B1 and CYP11B2 (P <0.0001). In KCNJ5 mutated APA, CYP11B2 mRNA (P <0.0001) and HSD3B1 mRNA (P = 0.011) were significantly higher than those of wild type APA. These results suggest that HSD3B1 is involved in aldosterone production, despite its lower levels of expression compared with HSD3B2, and also possibly associated with KCNJ5 mutation in APA.
Collapse
Affiliation(s)
- Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Saulo J A Felizola
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Maekawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Koshin Katsu
- Tohoku University School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Elise P Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
13
|
Mosa A, Neunzig J, Gerber A, Zapp J, Hannemann F, Pilak P, Bernhardt R. 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation. J Steroid Biochem Mol Biol 2015; 150:1-10. [PMID: 25746800 DOI: 10.1016/j.jsbmb.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/27/2022]
Abstract
The biosynthesis of steroid hormones in vertebrates is initiated by the cytochrome P450 CYP11A1, which performs the side-chain cleavage of cholesterol thereby producing pregnenolone. In this study, we report a direct stimulatory effect of the estrogens estradiol and estrone onto the pregnenolone formation in a reconstituted in vitro system consisting of purified CYP11A1 and its natural redox partners. We demonstrated the formation of new products from 11-deoxycorticosterone (DOC), androstenedione, testosterone and dehydroepiandrosterone (DHEA) during the in vitro reaction catalyzed by CYP11A1. In addition, we also established an Escherichia coli-based whole-cell biocatalytic system consisting of CYP11A1 and its redox partners to obtain sufficient yields of products for NMR-characterization. Our results indicate that CYP11A1, in addition to the previously described 6β-hydroxylase activity, possesses a 2β-hydroxylase activity towards DOC and androstenedione as well as a 16β-hydroxylase activity towards DHEA. We also showed that CYP11A1 is able to perform the 6β-hydroxylation of testosterone, a reaction that has been predominantly attributed to CYP3A4. Our results are the first evidence that sex hormones positively regulate the overall production of steroid hormones suggesting the need to reassess the role of CYP11A1 in steroid hormone biosynthesis and its substrate-dependent mechanistic properties.
Collapse
Affiliation(s)
- A Mosa
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Neunzig
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - A Gerber
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Zapp
- Institute of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany
| | - F Hannemann
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - P Pilak
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - R Bernhardt
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
14
|
Androgen receptor-mediated regulation of adrenocortical activity in the sand rat, Psammomys obesus. J Comp Physiol B 2014; 184:1055-63. [PMID: 25179180 DOI: 10.1007/s00360-014-0859-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 01/19/2023]
Abstract
The wild sand rat, Psammomys obesus, displays seasonal variations in adrenocortical activity that parallel those of testicular activity, indicating functional cross-talk between the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes. In the present study, we examined androgen receptor (AR)-mediated actions of testicular steroids in the regulation of adrenocortical function in the sand rat. Specifically, we examined the expression of AR in the adrenal cortex, as well as adrenal apoptosis in male sand rats that had been surgically castrated or castrated and supplemented with testosterone; biochemical indices of adrenocortical function and hormone profiles were also measured. Orchiectomy was followed by an increase in adrenocorticotropic hormone secretion from the anterior pituitary and subsequently, increased adrenocortical activity; the latter was evidenced by orchiectomy-induced increases in the adrenal content of cholesterol and lipids as well as adrenal hypertrophy (seen as an elevation of the RNA/DNA ratio). Further, androgen deprivation respectively up- and downregulated the incidence of apoptosis within the glucocorticoid-producing zona fasciculata and sex steroid-producing zona reticularis. Interestingly, orchiectomy resulted in increased expression of AR in the zona fasciculata. All of the orchiectomy-induced cellular and biochemical responses were reversible after testosterone substitution therapy. Together, these data suggest that adrenocortical activity in the sand rat is seasonally modulated by testicular androgens that act through AR located in the adrenal cortex itself.
Collapse
|
15
|
Dutta S, Mark-Kappeler CJ, Hoyer PB, Pepling ME. The Steroid Hormone Environment During Primordial Follicle Formation in
Perinatal Mouse Ovaries1. Biol Reprod 2014; 91:68. [DOI: 10.1095/biolreprod.114.119214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Sudipta Dutta
- Department of Biology, Syracuse University, Syracuse, New York
| | | | - Patricia B. Hoyer
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | | |
Collapse
|
16
|
Current World Literature. Curr Opin Obstet Gynecol 2012; 24:49-55. [DOI: 10.1097/gco.0b013e32834f97d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Mostaghel EA, Plymate S. New hormonal therapies for castration-resistant prostate cancer. Endocrinol Metab Clin North Am 2011; 40:625-42, x. [PMID: 21889725 PMCID: PMC3167094 DOI: 10.1016/j.ecl.2011.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continued activation of the androgen receptor (AR) axis despite castration remains a critical force in the development of castration-resistant prostate cancer (CRPC). Therapeutic strategies designed to more effectively ablate tumoral androgen activity are required to improve clinical efficacy and prevent disease progression. Tumor-based alterations in expression and activity of the AR and in steroidogenic pathways mediating ligand generation facilitate the development of CRPC. This article reviews AR and ligand-dependent mechanisms underlying CRPC progression and the status of novel hormonal therapies targeting the AR axis that are currently in clinical and preclinical development.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
18
|
Penning TM. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation. J Steroid Biochem Mol Biol 2011; 125:46-56. [PMID: 21272640 PMCID: PMC3104102 DOI: 10.1016/j.jsbmb.2011.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/16/2022]
Abstract
Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases, e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA.
| |
Collapse
|