1
|
Luo Y, Zhang C, Ma L, Zhang Y, Liu Z, Chen L, Wang R, Luan Y, Rao Y. Measurement of 7-dehydrocholesterol and cholesterol in hair can be used in the diagnosis of Smith-Lemli-Opitz syndrome. J Lipid Res 2022; 63:100228. [PMID: 35577137 PMCID: PMC9207299 DOI: 10.1016/j.jlr.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50-4000 ng/mg and 30-6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.
Collapse
Affiliation(s)
- Yitao Luo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Chengqiang Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxiao Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Zhengyuan Liu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Rui Wang
- College of Forensic Medicine, Kunming Medical University, Kunming, PR China
| | - Yujing Luan
- Institute of Forensic Science, Ministry of Public Security, Beijing, PR China.
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Luo Y, Liu Z, Zeng Y, Zhang Y, Luan Y, Ma L, Chen L, Zou L, Yang J, Huang Z, Rao Y, Zhang C. A reliable tool for detecting 7-dehydrocholesterol and cholesterol in human plasma and its use in diagnosis of Smith-Lemli-Opitz syndrome. J Sep Sci 2021; 45:1080-1093. [PMID: 34962712 DOI: 10.1002/jssc.202100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome is a birth defect caused by the deficiency of 7-dehydrocholesterol reductase in cholesterol biosynthesis pathway, which leads to accumulation of 7-dehydrocholesterol and reduction of cholesterol in body fluids. To effectively diagnose Smith-Lemli-Opitz syndrome and monitor therapy, a reliable method for simultaneous detection of 7-dehydrocholesterol and cholesterol is needed. METHODS In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), 50 μL of human plasma were hydrolyzed at 70℃ for 40 min with 1 M potassium hydroxide in 90% ethanol, and then 7-dehydrocholesterol and cholesterol were extracted by 600 μL of n-hexane for three times. After microwave-assisted derivatization with 70 μL of N,O-Bis(trimethylsilyl)trifluoroacetamide at 460 W for 3 min, the analytes were measured by gas chromatography-mass spectrometry (GC-MS). RESULTS The limits of detection were 100 ng/mL for 7-dehydrocholesterol and 300 ng/mL for cholesterol. Good linearity was obtained in the range of 1-600 μg/mL for 7-dehydrocholesterol and 10-600 μg/mL for cholesterol, which completely covered the biochemical levels of Smith-Lemli-Opitz syndrome patients that have been reported. CONCLUSION A time-saving and accurate GC-MS based method was developed for the determination of 7-dehydrocholesterol and cholesterol in human plasma, which also serves as a useful tool for Smith-Lemli-Opitz syndrome diagnosis, treatment and research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yitao Luo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Zhengyuan Liu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yujie Zeng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yuxiao Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yujing Luan
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, PR China
| | - Li Ma
- Department of Neonatology Shanghai Children's Hospital Shanghai Jiao Tong University, Shanghai, 200040, PR China
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Lin Zou
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Jingmin Yang
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai, 201315, PR China
| | - Zhibin Huang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Chengqiang Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital Affiliated to Fudan University, No. 419 Fang Xie Road, Shanghai, 200011, PR China
| |
Collapse
|
3
|
Identification and Characterization of 24-Dehydrocholesterol Reductase (DHCR24) in the Two-Spotted Cricket, Gryllus bimaculatus. INSECTS 2021; 12:insects12090782. [PMID: 34564222 PMCID: PMC8471071 DOI: 10.3390/insects12090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary DHCR24 (24-dehydrocholesterol reductase) is a key enzyme for producing cholesterol from desmosterol and that is also involved in the conversion of plant sterols to cholesterol in most plant-feeding insects. This study extensively examined the possibility of DHCR24 involved in the sterol conversion in omnivorous insects, which feed on multiple food origins. Homologs of DHCR24 (GbDHCR24-1 and -2) were identified and characterized by using the two-spotted cricket, Gryllus bimaculatus, as an experimental model. The quantitative expression analyses and RNA interference experiments revealed that GbDHCR24-1 rather than GbDHCR24-2 facilitates the desmosterol-to-cholesterol conversion in crickets. Our data suggested that the omnivorous species produced cholesterol from desmosterol in the same manner as the plant-feeding species do. Abstract Arthropods, including insects, convert sterols into cholesterol due to the inability to synthesise cholesterol de novo. 24-dehydrocholesterol reductase (DHCR24) plays an important role in the conversion. Not only involving the cholesterol biosynthesis in vertebrates, DHCR24 is required for the conversion of desmosterol into cholesterol in phytophagous insects. The current study extensively examined DHCR24 in omnivorous insects, which feed on both plants and animals, using Gryllus bimaculatus as the experimental model. We identified cDNAs encoding two homologues of DHCR24 from G. bimaculatus, which were designated as GbDHCR24-1 and GbDHCR24-2. Both homologues contained the flavin adenine dinucleotide binding domain, which is a feature of DHCR24. Quantitative polymerase chain reaction revealed that among tissues of adult crickets, fat body and anterior midgut expressed high levels of GbDHCR24s. Both fat body and anterior midgut demonstrated DHCR24 activities in which one of the functions is the conversion of desmosterol into cholesterol in vitro. Knockdown of GbDHCR24-1 significantly reduced the conversion activity in the anterior midgut while knockdown of the GbDHCR24-2 did not. Additionally, the accumulation of desmosterol was detected in a feeding experiment with a specific DHCR24 inhibitor, azacosterol. We finally concluded that GbDHCR24-1 is the major enzyme that facilitates the desmosterol-to-cholesterol-conversion in crickets.
Collapse
|
4
|
Wang H, Humbatova A, Liu Y, Qin W, Lee M, Cesarato N, Kortüm F, Kumar S, Romano MT, Dai S, Mo R, Sivalingam S, Motameny S, Wu Y, Wang X, Niu X, Geng S, Bornholdt D, Kroisel PM, Tadini G, Walter SD, Hauck F, Girisha KM, Calza AM, Bottani A, Altmüller J, Buness A, Yang S, Sun X, Ma L, Kutsche K, Grzeschik KH, Betz RC, Lin Z. Mutations in SREBF1, Encoding Sterol Regulatory Element Binding Transcription Factor 1, Cause Autosomal-Dominant IFAP Syndrome. Am J Hum Genet 2020; 107:34-45. [PMID: 32497488 DOI: 10.1016/j.ajhg.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.
Collapse
Affiliation(s)
- Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Aytaj Humbatova
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Mingyang Lee
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Nicole Cesarato
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Maria Teresa Romano
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Shangzhi Dai
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Sugirthan Sivalingam
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dorothea Bornholdt
- Centre for Human Genetics, University of Marburg, 35033 Marburg, Germany
| | - Peter M Kroisel
- Institute of Human Genetics, Medical University of Graz, 8010 Graz, Austria
| | - Gianluca Tadini
- Pediatric Dermatology Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Scott D Walter
- Retina Consultants, P.C., 43 Woodland Street, Suite 100, Hartford, CT 06105, USA
| | - Fabian Hauck
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anne-Marie Calza
- Department of Dermatology and Venereology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Shuxia Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany.
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| |
Collapse
|
5
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Steroid Fingerprint Analysis of Endangered Caspian Seal ( Pusa caspica) through the Gorgan Bay (Caspian Sea). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7339-7353. [PMID: 32459473 DOI: 10.1021/acs.est.0c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The profile of steroid congeners was evaluated in Caspian seals Pusa caspica by age, sex, and tissue-specific bioaccumulation, and compared with that of abiotic matrices (seawater, surface sediment, and suspended particulate materials, SPMs) from Miankaleh Wildlife/Gorgan Bay, (Caspian Sea, Iran). To identify the level of human fecal contamination, ∑25 sterol congeners were measured in all abiotic/biotic samples, revealing coprostanol, a proxy for human feces, as the most abundant sterol (seawater: 45.1-20.3 ng L-1; surface sediment: 90.2-70.3 ng g-1 dw; SPMs: 187.7-157.6 ng g-1 dw). The quantification of ∑25 sterols in seals followed the order of brain > liver > kidney > heart > blood > spleen > muscle > intestine > blubber > fur, and in both sexes coprostanol level (8.95-21.01% of ∑25s) was higher in blubber and fur, followed by cholesterol in brain, liver, kidney, heart, and blood, cholestanone in intestine and muscle, and β-sitosterol in spleen. Though no age/sex differentiation was observed, the mean concentration of ∑25s was higher in male than females and pup. Different diagnostic ratios revealed sterols originating from human and nonhuman sewage sources. Findings pinpoint the urgent necessity to investigate the ecotoxicity of fecal sterols in mammals, and consequent implications for human health.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Sakineh Mashjoor
- Department of Marine biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| |
Collapse
|
6
|
Palmer MA, Blakeborough L, Harries M, Haslam IS. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp Dermatol 2019; 29:299-311. [PMID: 31260136 DOI: 10.1111/exd.13993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
Lipids and lipid metabolism are critical factors in hair follicle (HF) biology, and cholesterol has long been suspected of influencing hair growth. Altered cholesterol homeostasis is involved in the pathogenesis of primary cicatricial alopecia, mutations in a cholesterol transporter are associated with congenital hypertrichosis, and dyslipidaemia has been linked to androgenic alopecia. The underlying molecular mechanisms by which cholesterol influences pathways involved in proliferation and differentiation within HF cell populations remain largely unknown. As such, expanding our knowledge of the role for cholesterol in regulating these processes is likely to provide new leads in the development of treatments for disorders of hair growth and cycling. This review describes the current state of knowledge with respect to cholesterol homeostasis in the HF along with known and putative links to hair pathologies.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Liam Blakeborough
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Iain S Haslam
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
7
|
Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex. Am J Hum Genet 2018; 103:777-785. [PMID: 30401459 DOI: 10.1016/j.ajhg.2018.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022] Open
Abstract
Hypotrichosis simplex (HS) is a rare form of hereditary alopecia characterized by childhood onset of diffuse and progressive scalp and body hair loss. Although research has identified a number of causal genes, genetic etiology in about 50% of HS cases remains unknown. The present report describes the identification via whole-exome sequencing of five different mutations in the gene LSS in three unrelated families with unexplained, potentially autosomal-recessive HS. Affected individuals showed sparse to absent lanugo-like scalp hair, sparse and brittle eyebrows, and sparse eyelashes and body hair. LSS encodes lanosterol synthase (LSS), which is a key enzyme in the cholesterol biosynthetic pathway. This pathway plays an important role in hair follicle biology. After localizing LSS protein expression in the hair shaft and bulb of the hair follicle, the impact of the mutations on keratinocytes was analyzed using immunoblotting and immunofluorescence. Interestingly, wild-type LSS was localized in the endoplasmic reticulum (ER), whereas mutant LSS proteins were localized in part outside of the ER. A plausible hypothesis is that this mislocalization has potential deleterious implications for hair follicle cells. Immunoblotting revealed no differences in the overall level of wild-type and mutant protein. Analyses of blood cholesterol levels revealed no decrease in cholesterol or cholesterol intermediates, thus supporting the previously proposed hypothesis of an alternative cholesterol pathway. The identification of LSS as causal gene for autosomal-recessive HS highlights the importance of the cholesterol pathway in hair follicle biology and may facilitate novel therapeutic approaches for hair loss disorders in general.
Collapse
|
8
|
Singh K, Camera E, Krug L, Basu A, Pandey RK, Munir S, Wlaschek M, Kochanek S, Schorpp-Kistner M, Picardo M, Angel P, Niemann C, Maity P, Scharffetter-Kochanek K. JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. Nat Commun 2018; 9:3425. [PMID: 30143626 PMCID: PMC6109099 DOI: 10.1038/s41467-018-05726-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Transcription factors ensure skin homeostasis via tight regulation of distinct resident stem cells. Here we report that JunB, a member of the AP-1 transcription factor family, regulates epidermal stem cells and sebaceous glands through balancing proliferation and differentiation of progenitors and by suppressing lineage infidelity. JunB deficiency in basal progenitors results in a dermatitis-like syndrome resembling seborrheic dermatitis harboring structurally and functionally impaired sebaceous glands with a globally altered lipid profile. A fate switch occurs in a subset of JunB deficient epidermal progenitors during wound healing resulting in de novo formation of sebaceous glands. Dysregulated Notch signaling is identified to be causal for this phenotype. In fact, pharmacological inhibition of Notch signaling can efficiently restore the lineage drift, impaired epidermal differentiation and disrupted barrier function in JunB conditional knockout mice. These findings define an unprecedented role for JunB in epidermal-pilosebaceous stem cell homeostasis and its pathology. Epidermal homeostasis is maintained by the activity of stem cells. Here, the authors show that deficiency of the transcription factor JunB leads to altered Notch signaling in stem cells, resulting in a cell fate switch and de novo formation of aberrant sebaceous glands, altered epidermal differentiation and impaired barrier function.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Rajeev Kumar Pandey
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Saira Munir
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Ulm, 89081, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Catherin Niemann
- Institute for Biochemistry II, University of Cologne, Cologne, 50931, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50931, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| |
Collapse
|
9
|
Makarova AM, Pasta S, Watson G, Shackleton C, Epstein EH. Attenuation of UVR-induced vitamin D 3 synthesis in a mouse model deleted for keratinocyte lathosterol 5-desaturase. J Steroid Biochem Mol Biol 2017; 171:187-194. [PMID: 28330720 DOI: 10.1016/j.jsbmb.2017.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The lower risk of some internal cancers at lower latitudes has been linked to greater sun exposure and consequent higher levels of ultraviolet radiation (UVR)-produced vitamin D3 (D3). To separate the experimental effects of sunlight and of all forms of D3, a mouse in which UVR does not produce D3 would be useful. To this end we have generated mice carrying a modified allele of sterol C5-desaturase (Sc5d), the gene encoding the enzyme that converts lathosterol to 7-dehydrocholesterol (7-DHC), such that Sc5d expression can be inactivated using the Cre/lox site-specific recombination system. By crossing to mice with tissue-specific expression of Cre or CreER2 (Cre/estrogen receptor), we generated two lines of transgenic mice. One line has constitutive keratinocyte-specific inactivation of Sc5d (Sc5dk14KO). The other line (Sc5dk14KOi) has tamoxifen-inducible keratinocyte-specific inactivation of Sc5d. Mice deleted for keratinocyte Sc5d lose the ability to increase circulating D3 following UVR exposure of the skin. Thus, unlike in control mice, acute UVR exposure did not affect circulating D3 level in inducible Sc5dk14KOi mice. Keratinocyte-specific inactivation of Sc5d was proven by sterol measurement in hair - in control animals lathosterol and cholesta-7,24-dien-3β-ol, the target molecules of SC5D in the sterol biosynthetic pathways, together constituted a mean of 10% of total sterols; in the conditional knockout mice these sterols constituted a mean of 56% of total sterols. The constitutive knockout mice had an even greater increase, with lathosterol and cholesta-7,24-dien-3β-ol accounting for 80% of total sterols. In conclusion, the dominant presence of the 7-DHC precursors in hair of conditional animals and the lack of increased circulating D3 following exposure to UVR reflect attenuated production of the D3 photochemical precursor 7-DHC and, consequently, of D3 itself. These animals provide a useful new tool for investigating the role of D3 in UVR-induced physiological effects and, more broadly, for investigations of the cholesterol synthetic pathway in the skin and other targeted tissues.
Collapse
Affiliation(s)
- Anastasia M Makarova
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Saloni Pasta
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Gordon Watson
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Cedric Shackleton
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA; Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ervin H Epstein
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA.
| |
Collapse
|
10
|
Kim MJ, Yu CY, Theusch E, Naidoo D, Stevens K, Kuang YL, Schuetz E, Chaudhry AS, Medina MW. SUGP1 is a novel regulator of cholesterol metabolism. Hum Mol Genet 2016; 25:3106-3116. [PMID: 27206982 PMCID: PMC5181593 DOI: 10.1093/hmg/ddw151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1. Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20–50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.
Collapse
Affiliation(s)
- Mee J Kim
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Elizabeth Theusch
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Devesh Naidoo
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Kristen Stevens
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Erin Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
11
|
Pasta S, Akhile O, Tabron D, Ting F, Shackleton C, Watson G. Delivery of the 7-dehydrocholesterol reductase gene to the central nervous system using adeno-associated virus vector in a mouse model of Smith-Lemli-Opitz Syndrome. Mol Genet Metab Rep 2015; 4:92-98. [PMID: 26347274 PMCID: PMC4559272 DOI: 10.1016/j.ymgmr.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Smith Lemli Opitz syndrome (SLOS) is an inherited malformation and mental retardation metabolic disorder with no cure. Mutations in the last enzyme of the cholesterol biosynthetic pathway, 7-dehydrocholesterol reductase (DHCR7), lead to cholesterol insufficiency and accumulation of its dehyrdocholesterol precursors, and contribute to its pathogenesis. The central nervous system (CNS) constitutes a major pathophysiological component of this disorder and remains unamenable to dietary cholesterol therapy due to the impenetrability of the blood brain barrier (BBB). The goal of this study was to restore sterol homeostasis in the CNS. To bypass the BBB, gene therapy using an adeno-associated virus (AAV-8) vector carrying a functional copy of the DHCR7 gene was administered by intrathecal (IT) injection directly into the cerebrospinal fluid of newborn mice. Two months post-treatment, vector DNA and DHCR7 expression was observed in the brain and a corresponding improvement of sterol levels seen in the brain and spinal cord. Interestingly, sterol levels in the peripheral nervous system also showed a similar improvement. This study shows that IT gene therapy can have a positive biochemical effect on sterol homeostasis in the central and peripheral nervous systems in a SLOS animal model. A single dose delivered three days after birth had a sustained effect into adulthood, eight weeks post-treatment. These observations pave the way for further studies to understand the effect of biochemical improvement of sterol levels on neuronal function, to provide a greater understanding of neuronal cholesterol homeostasis, and to develop potential therapies.
Collapse
Affiliation(s)
- Saloni Pasta
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Omoye Akhile
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Dorothy Tabron
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Flora Ting
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| |
Collapse
|
12
|
Ying L, Matabosch X, Serra M, Watson B, Shackleton C, Watson G. Biochemical and Physiological Improvement in a Mouse Model of Smith-Lemli-Opitz Syndrome (SLOS) Following Gene Transfer with AAV Vectors. Mol Genet Metab Rep 2014; 1:103-113. [PMID: 25024934 PMCID: PMC4093838 DOI: 10.1016/j.ymgmr.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol synthesis resulting from a defect in 7-dehydrocholesterol reductase (DHCR7), the enzyme that produces cholesterol from its immediate precursor 7-dehydrocholesterol. Current therapy employing dietary cholesterol is inadequate. As SLOS is caused by a defect in a single gene, restoring enzyme functionality through gene therapy may be a direct approach for treating this debilitating disorder. In the present study, we first packaged a human DHCR7 construct into adeno-associated virus (AAV) vectors having either type-2 (AAV2) or type-8 (AAV2/8) capsid, and administered treatment to juvenile mice. While a positive response (assessed by increases in serum and liver cholesterol) was seen in both groups, the improvement was greater in the AAV2/8-DHCR7 treated mice. Newborn mice were then treated with AAV2/8-DHCR7 and these mice, compared to mice treated as juveniles, showed higher DHCR7 mRNA expression in liver and a greater improvement in serum and liver cholesterol levels. Systemic treatment did not affect brain cholesterol in any of the experimental groups. Both juvenile and newborn treatments with AAV2/8-DHCR7 resulted in increased rates of weight gain indicating that gene transfer had a positive physiological effect.
Collapse
Affiliation(s)
- Lee Ying
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Xavier Matabosch
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Berna Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| |
Collapse
|