1
|
Mandour AA, Elkaeed EB, Hagras M, Refaat HM, Ismail NS. Virtual screening approach for the discovery of selective 5α-reductase type II inhibitors for benign prostatic hyperplasia treatment. Future Med Chem 2023; 15:2149-2163. [PMID: 37955117 DOI: 10.4155/fmc-2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Background: 5α-Reductase type II (5αR2) inhibition is a promising strategy for benign prostatic hyperplasia treatment. A computational approach including virtual screening, ligand-based 3D pharmacophore modeling, 2D quantitative structure-activity relationship and molecular docking simulations were adopted to develop novel inhibitors. Results: Hits were first filtered via the validated pharmacophore and 2D quantitative structure-activity relationship models. Docking on the recently determined cocrystallized structure of 5αR2 showed three promising hits. Visual inspection results were compared with finasteride ligand and dihydrotestosterone as reference, to explain the role of binding to Glu57 and Tyr91 for 5αR2 selective inhibition. Conclusion: Alignment between Hit 2 and finasteride in the binding pocket showed similar binding modes. The biological activity prediction showed antitumor and androgen targeting activity of the new hits.
Collapse
Affiliation(s)
- Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hanan M Refaat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| | - Nasser Sm Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| |
Collapse
|
2
|
Zhang F, Chen F, Wang C, Zhou FH. The functional roles of m6A modification in prostate cancer. Proteomics Clin Appl 2023; 17:e2200108. [PMID: 37070355 DOI: 10.1002/prca.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy of the male genitourinary system, and its etiology suggests that genetics is an essential risk factor for its development and progression, while exogenous factors may have an significant impact on this risk. Initial diagnosis of advanced PCa is relatively frequent, and androgen deprivation therapy (ADT) is the predominant standard of care for PCa and the basis for various novel combination therapy regimens, and is often required throughout the patient's subsequent treatment. Although diagnostic modalities and treatment options are evolving, some patients suffer from complications, including biochemical relapse, metastasis and treatment resistance. Mechanisms of PCa pathogenesis and progression have been the focus of research. N6-methyladenosine (m6A) is an RNA modification involved in cell physiology and tumor metabolism. It has been observed to affect the evolution of diverse cancers through the regulation of gene expression. Genes associated with m6A are prominent in PCa and are involved in multiple aspects of desmoresistant PCa occurrence, progression, PCa bone metastasis (BM), and treatment resistance. Here, we explore the role of m6A modifications in promoting PCa.
Collapse
Affiliation(s)
- Fa Zhang
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, Gansu, China
| | - Feng Chen
- Department of Anaesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chao Wang
- Department of Anaesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng-Hai Zhou
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Lee JY, Kim S, Kim S, Kim JH, Bae BS, Koo GB, So SH, Lee J, Lee YH. Effects of red ginseng oil(KGC11 o) on testosterone-propionate-induced benign prostatic hyperplasia. J Ginseng Res 2022; 46:473-480. [PMID: 35600774 PMCID: PMC9120790 DOI: 10.1016/j.jgr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Benign prostatic hyperplasia (BPH) is a disease characterized by abnormal proliferation of the prostate, which occurs frequently in middle-aged men. In this study, we report the effect of red ginseng oil (KGC11o) on BPH. Methods The BPH-induced Sprague-Dawley rats were divided into seven groups: control, BPH, KGC11o 25, 50, 100, 200, and finasteride groups. KGC11o and finasteride were administered for 8 weeks. The BPH biomarkers, DHT, 5AR1, and 5AR2, androgen receptor, prostate-specific antigen (PSA), Bax, Bcl-2, and TGF-β were determined in the serum and prostate tissue. The cell viability after KGC11o treatment was determined using BPH-1 cells, and, androgen receptor, Bax, Bcl-2, and TGF-β were confirmed by western blotting. Results In the in vivo study, administration of KGC11o reduced prostate weight by 18%, suppressed DHT (up to 22%) and 5AR2 (up to 12%) levels from administration of 100 mg/kg KGC11o (P < 0.05). PSA was significantly downregulated dose-dependently from at the concentration of 50 mg/kg KGC11o (P < 0.05). BPH-1 cell viability significantly reduced through the treatment with KGC11o. In vitro and vivo, AR, Bcl-2 TGF-β levels reduced significantly but Bax was increased (P < 0.05). Conclusion These results suggest that KGC11o may inhibit the development of BPH by significantly reducing the levels of BPH biomarkers via 5ARI, anti-androgenic effect, and anti-proliferation effect, serving as a potential functional food for treating BPH.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Sohyuk Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Seokho Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Jong Han Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Bong Seok Bae
- Laboratory of Resource and Analysis, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gi-Bang Koo
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Yoo-Hyun Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| |
Collapse
|
4
|
Martínez-Gallegos AA, Guerrero-Luna G, Ortiz-González A, Cárdenas-García M, Bernès S, Hernández-Linares MG. Azasteroids from diosgenin: Synthesis and evaluation of their antiproliferative activity. Steroids 2021; 166:108777. [PMID: 33309534 DOI: 10.1016/j.steroids.2020.108777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
In this work, we report the synthesis of two new azasteroids through the modification of the A and B rings of diosgenin 1. The 4-azasteroid derivative 12 was prepared in three steps using the α,β-insaturated-3-keto compound 11 as a precursor, which was first oxidized with KMnO4/KIO4 followed by an oxidative cleavage of ring A, and subsequently cyclized with an ammonium salt, under focused microwave irradiation for a short time of 3 min. A second azasteroid was synthesized, for which the key step was the Beckmann rearrangement of ring B of the oxime 16, affording the lactam-type enamide 17 in good yield. The methodologies developed for the synthesis of the precursors derivatives 10 and 11 contribute to improved yields, compared to those reported in the literature. The biological activity of the azasteroidal compounds 12 and 17 and their precursors has been evaluated in cervical cancer cells (HeLa), colon (HCT-15), and triple negative breast cancer (MDA-MB-231) lines.
Collapse
Affiliation(s)
| | - Gabriel Guerrero-Luna
- Posgrado en Ciencias Químicas. Benemérita, Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Alejandra Ortiz-González
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias. Benemérita, Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico; Laboratorio de Investigación Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico.
| |
Collapse
|
5
|
Javed Z, Khan K, Rasheed A, Sadia H, Shahwani MN, Irshad A, Raza S, Salehi B, Sharifi-Rad J, Suleria HAR, Cruz-Martins N, Quispe C. Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention. Cancer Cell Int 2021; 21:77. [PMID: 33499881 PMCID: PMC7836194 DOI: 10.1186/s12935-021-01777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, PR China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammad Naeem Shahwani
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile.
| |
Collapse
|
6
|
An YJ, Lee JY, Kim Y, Jun W, Lee YH. Cranberry Powder Attenuates Benign Prostatic Hyperplasia in Rats. J Med Food 2020; 23:1296-1302. [PMID: 33136465 DOI: 10.1089/jmf.2020.4779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cranberry powder (CR) is reported to be effective against lower urinary tract symptoms (LUTS) and recurrent urinary tract infections. Benign prostatic hyperplasia (BPH) in men older than 50 years is a common cause of LUTS. Here, we attempted to evaluate if CR is also effective for treating BPH using a BPH-induced rat model, which was orally administered CR. Male Sprague-Dawley rats weighing 200-250 g were randomly divided into the following six groups (n = 9): noncastration group; castration group; BPH group; BPH and cranberry for 8-week (CR8W) group; BPH and cranberry for 4-week (CR4W) group; and BPH and saw palmetto group (saw palmetto). Compared with the BPH group, the CR8W group showed a significant decrease in prostate weight (by 33%), dihydrotestosterone (DHT) levels (by 18% in serum and 28% in prostate), 5-alpha reductase levels (18% reduction of type 1 and 35% of type 2), and histological changes. These results indicate that CR could attenuate BPH by inhibiting 5-alpha reductase and by reducing other biomarkers such as prostate weight and DHT levels. Thus, CR may be an effective candidate for the development of a functional food for BPH treatment. IACUC (USW-IACUC-R-2015-004).
Collapse
Affiliation(s)
- Yeon Ju An
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Jeong Yoon Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Yulha Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Yoo-Hyun Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| |
Collapse
|
7
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat Commun 2020; 11:5430. [PMID: 33110062 PMCID: PMC7591894 DOI: 10.1038/s41467-020-19249-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia. The molecular mechanisms underlying enzyme catalysis and inhibition for SRD5A2 and other eukaryotic integral membrane steroid reductases remain elusive due to a lack of structural information. Here, we report a crystal structure of human SRD5A2 at 2.8 Å, revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the transmembrane domain. Structural analysis together with computational and mutagenesis studies reveal the molecular mechanisms of the catalyzed reaction and of finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region that regulate NADPH/NADP+ exchange. Mapping disease-causing mutations of SRD5A2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and may facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, 999078, Macau, SAR, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Ye
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with anti-androgen drug finasteride. RESEARCH SQUARE 2020:rs.3.rs-40159. [PMID: 32702725 PMCID: PMC7373137 DOI: 10.21203/rs.3.rs-40159/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human steroid 5α-reductase 2 (SRD5α2) as a critical integral membrane enzyme in steroid metabolism catalyzes testosterone to dihydrotestosterone. Mutations on its gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride as SRD5α2 inhibitors are widely used anti-androgen drugs for benign prostate hyperplasia, which have recently been indicated in the treatment of COVID-19. The molecular mechanisms underlying enzyme catalysis and inhibition remained elusive for SRD5α2 and other eukaryotic integral membrane steroid reductases due to a lack of structural information. Here, we report a crystal structure of human SRD5α2 at 2.8 Å revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the membrane. Structural analysis together with computational and mutagenesis studies reveals molecular mechanisms for the 5α-reduction of testosterone and the finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region regulating the NADPH/NADP + exchange. Mapping disease-causing mutations of SRD5α2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and will facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Fei Ye
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
9
|
Fully automated chip-based nanoelectrospray ionization-mass spectrometry as an effective tool for rapid and high-throughput screening of 5α-reductase inhibitors. Anal Bioanal Chem 2020; 412:1685-1692. [DOI: 10.1007/s00216-020-02408-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
|
10
|
Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019; 94:1740-1749. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
11
|
Growth arrest and DNA-damage-inducible 45 beta (GADD45β) deletion suppresses testosterone-induced prostate hyperplasia in mice. Life Sci 2018; 211:74-80. [DOI: 10.1016/j.lfs.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
|
12
|
Guddati AK. Current and potential targets for drug design in the androgen receptor pathway for prostate cancer. Expert Opin Drug Discov 2018; 13:489-496. [PMID: 29621897 DOI: 10.1080/17460441.2018.1455662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Modulating the androgen axis by different agents has been one of the most successful therapeutic interventions in the field of prostate cancer therapy. Newer agents such as abiraterone and enzalutamide have been widely adapted and have contributed to an increase in the overall survival of prostate cancer patients. However, most of these patients will develop resistance to these agents and will need chemotherapy. Areas covered: In this review, this author discusses current agents which modulate the androgen axis, the mechanisms of resistance to these agents and investigative agents which are designed to bypass these mechanisms of resistance. Potential targets in the androgen axis and related biochemical pathways are, furthermore, identified. Expert opinion: Understanding the mechanism of resistance to these agents is crucial in developing third generation anti-androgen agents which can potentially contribute to the longevity of prostate cancer patients to a greater extent. Besides developing more potent agents, it is also important to formulate new strategies to resensitize patients to current anti-androgen agents by carefully sequencing chemotherapy regimens and abrogating genetic changes which are known to cause resistance to anti-androgens. Combinatorial approach with immunotherapy offers prospects which may yield better results and need to be thoroughly explored.
Collapse
|
13
|
Akbaba H, Erel Akbaba G, Kantarcı AG. Development and evaluation of antisense shRNA-encoding plasmid loaded solid lipid nanoparticles against 5-α reductase activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Dadwal UC, Chang ES, Sankar U. Androgen Receptor-CaMKK2 Axis in Prostate Cancer and Bone Microenvironment. Front Endocrinol (Lausanne) 2018; 9:335. [PMID: 29967592 PMCID: PMC6015873 DOI: 10.3389/fendo.2018.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
The skeletal system is of paramount importance in advanced stage prostate cancer (PCa) as it is the preferred site of metastasis. Complex mechanisms are employed sequentially by PCa cells to home to and colonize the bone. Bone-resident PCa cells then recruit osteoblasts (OBs), osteoclasts (OCs), and macrophages within the niche into entities that promote cancer cell growth and survival. Since PCa is heavily reliant on androgens for growth and survival, androgen-deprivation therapy (ADT) is the standard of care for advanced disease. Although it significantly improves survival rates, ADT detrimentally affects bone health and significantly increases the risk of fractures. Moreover, whereas the majority patients with advanced PCa respond favorably to androgen deprivation, most experience a relapse of the disease to a hormone-refractory form within 1-2 years of ADT. The tumor adapts to surviving under low testosterone conditions by selecting for mutations in the androgen receptor (AR) that constitutively activate it. Thus, AR signaling remains active in PCa cells and aids in its survival under low levels of circulating androgens and additionally allows the cancer cells to manipulate the bone microenvironment to fuel its growth. Hence, AR and its downstream effectors are attractive targets for therapeutic interventions against PCa. Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), was recently identified as a key downstream target of AR in coordinating PCa cell growth, survival, and migration. Additionally, this multifunctional serine/threonine protein kinase is a critical mediator of bone remodeling and macrophage function, thus emerging as an attractive therapeutic target downstream of AR in controlling metastatic PCa and preventing ADT-induced bone loss. Here, we discuss the role played by AR-CaMKK2 signaling axis in PCa survival, metabolism, cell growth, and migration as well as the cell-intrinsic roles of CaMKK2 in OBs, OCs, and macrophages within the bone microenvironment.
Collapse
|
15
|
Kim HT, Kim YJ, Park SR, Ryu SY, Jung JY. NAD(P)H-quinone oxidoreductase 1 silencing aggravates hormone-induced prostatic hyperplasia in mice. Andrologia 2017; 50. [DOI: 10.1111/and.12906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- H.-T. Kim
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - Y.-J. Kim
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - S.-R. Park
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - S.-Y. Ryu
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - J.-Y. Jung
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| |
Collapse
|
16
|
Abstract
The androgen-signaling axis plays a pivotal role in the pathogenesis of prostate cancer. Since the landmark discovery by Huggins and Hodges, gonadal depletion of androgens has remained a mainstay of therapy for advanced disease. However, progression to castration-resistant prostate cancer (CRPC) typically follows and is largely the result of restored androgen signaling. Efforts to understand the mechanisms behind CRPC have revealed new insights into dysregulated androgen signaling and intratumoral androgen synthesis, which has ultimately led to the development of several novel androgen receptor (AR)-directed therapies for CRPC. However, emergence of resistance to these newer agents has also galvanized new directions in investigations of prereceptor and postreceptor AR regulation. Here, we review our current understanding of AR signaling as it pertains to the biology and natural history of prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hannelore Heemers
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nima Sharifi
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
17
|
Aggarwal S, Mahapatra MK, Kumar R, Bhardwaj TR, Hartmann RW, Haupenthal J, Kumar M. Synthesis and biological evaluation of 3-tetrazolo steroidal analogs: Novel class of 5α-reductase inhibitors. Bioorg Med Chem 2016; 24:779-88. [DOI: 10.1016/j.bmc.2015.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/24/2022]
|
18
|
Takayama KI, Inoue S. The emerging role of noncoding RNA in prostate cancer progression and its implication on diagnosis and treatment. Brief Funct Genomics 2015; 15:257-65. [DOI: 10.1093/bfgp/elv057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
19
|
Martin SK, Kyprianou N. Exploitation of the Androgen Receptor to Overcome Taxane Resistance in Advanced Prostate Cancer. Adv Cancer Res 2015; 127:123-58. [PMID: 26093899 DOI: 10.1016/bs.acr.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a tumor addicted to androgen receptor (AR) signaling, even in its castration resistant state, and recently developed antiandrogen therapies including Abiraterone acetate and enzalutamide effectively target the androgen signaling axis, but there is ultimately recurrence to lethal disease. Development of advanced castration-resistant prostate cancer (CRPC) is a biological consequence of lack of an apoptotic response of prostate tumor cells to androgen ablation. Taxanes represent the major clinically relevant chemotherapy for the treatment of patients with metastatic CRPC; unfortunately, they do not deliver a cure but an extension of overall survival. First-generation taxane chemotherapies, Docetaxel (Taxotere), effectively target the cytoskeleton by stabilizing the interaction of β-tubulin subunits of microtubules preventing depolymerization, inducing G2M arrest and apoptosis. Shifting the current paradigm is a growing evidence to indicate that Docetaxel can effectively target the AR signaling axis by blocking its nuclear translocation and transcriptional activity in androgen-sensitive and castration-resistant prostate cancer cells, implicating a new mechanism of cross-resistance between microtubule-targeting chemotherapy and antiandrogen therapies. More recently, Cabazitaxel has emerged as a second-line taxane chemotherapy capable of conferring additional survival benefit to patients with CRPC previously treated with Docetaxel or in combination with antiandrogens. Similar to Docetaxel, Cabazitaxel induces apoptosis and G2M arrest; in contrast to Docetaxel, it sustains AR nuclear accumulation although it reduces the overall AR levels and FOXO1 expression. Cabazitaxel treatment also leads to downregulation of the microtubule-depolymerizing mitotic kinesins, MCAK, and HSET, preventing their ability to depolymerize microtubules and thus enhancing sensitivity to taxane treatment. The molecular mechanisms underlying taxane resistance involve mutational alterations in the tubulin subunits, microtubule dynamics, phenotyping programming of the epithelial-to-mesenchymal transition landscape, and the status of AR activity. This chapter discusses the mechanisms driving the therapeutic resistance of taxanes and antiandrogen therapies in CRPC, and the role of AR in potential interventions toward overcoming such resistance in patients with advanced metastatic disease.
Collapse
Affiliation(s)
- Sarah K Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Natasha Kyprianou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Pathology and Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
20
|
da Silva LM, Montanari CM, Santos OMM, Cazedey ECL, Ângelo ML, de Araújo MB. Quality evaluation of the Finasteride polymorphic forms I and II in capsules. J Pharm Biomed Anal 2015; 105:24-31. [DOI: 10.1016/j.jpba.2014.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 01/24/2023]
|
21
|
Wang K, Fan DD, Jin S, Xing NZ, Niu YN. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications. Asian J Androl 2014; 16:274-9. [PMID: 24457841 PMCID: PMC3955340 DOI: 10.4103/1008-682x.123664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T) and dihydrotestosterone (DHT). T is converted to DHT by 5-alpha reductase (5-AR) isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI) are commonly used for the treatment of benign prostatic hyperplasia (BPH) and were once promoted as chemopreventive agents for prostate cancer (PCa). This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa.
Collapse
Affiliation(s)
| | | | | | | | - Yi-Nong Niu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Chhipa RR, Halim D, Cheng J, Zhang HY, Mohler JL, Ip C, Wu Y. The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific. Prostate 2013; 73:1483-94. [PMID: 23813737 PMCID: PMC3992475 DOI: 10.1002/pros.22696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/15/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. METHODS A total of four human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild-type AR), and VCaP (wild-type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. RESULTS Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. CONCLUSIONS The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function.
Collapse
Affiliation(s)
- Rishi Raj Chhipa
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Danny Halim
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
- Health Research Unit Faculty of Medicine Universitas Padjadjaran Bandung 40161, Indonesia
| | - Jinrong Cheng
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Huan Yi Zhang
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - James L. Mohler
- Department of Urology Roswell Park Cancer Institute Buffalo, NY 14263
- Department of Urology University at Buffalo School of Medicine and Biotechnology Buffalo, NY 14263
| | - Clement Ip
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Yue Wu
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
- Corresponding Author: Department of Cancer Prevention and Control Roswell Park Cancer Institute Elm & Carlton Streets Buffalo, NY 14263 Phone: 716-845-1704; Fax: 716-845-8100
| |
Collapse
|
23
|
Salvador JAR, Pinto RMA, Silvestre SM. Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. J Steroid Biochem Mol Biol 2013; 137:199-222. [PMID: 23688836 DOI: 10.1016/j.jsbmb.2013.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 04/14/2013] [Accepted: 04/26/2013] [Indexed: 11/26/2022]
Abstract
The role of steroidal inhibitors of androgen biosynthesis as potential weapons in the treatment of prostatic diseases, such as benign prostatic hyperplasia and prostatic cancer will be reviewed. Two enzymes have been targeted in the development of inhibitors that potentially could be useful in the management of such conditions. 5α-Reductase is primarily of interest in benign prostatic disease, though some role in the chemoprevention of prostatic carcinoma have been considered, whereas the 17α-hydroxylase/17,20-lyase (CYP17) enzyme is of interest in the treatment of malignant disease. An overview of the main achievements obtained during the past years will be presented, however special focus will be made on steroidal molecules that reached clinical trials or have been commercially launched. Relevant examples of such drugs are finasteride, dutasteride, abiraterone acetate and galeterone (TOK-001, formerly known as VN/124-1). This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.
| | | | | |
Collapse
|
24
|
Abstract
Receptor-based targeting of therapeutics may be a fascinating proposition to improve the therapeutic efficacy of encapsulated drugs. The development of safe and effective nanomedicines is a prerequisite in the current nanotechnological scenario. Currently, the surface engineering of nanocarriers has attracted great attention for targeted therapeutic delivery by selective binding of targeting ligand to the specific receptors present on the surface of cells. In this review, we have discussed the current status of various receptors such as transferrin, lectoferrin, lectin, folate, human EGF receptor, scavenger, nuclear and integrin, which are over-expressed on the surface of cancer cells; along with the relevance of targeted delivery systems such as nanoparticles, polymersomes, dendrimers, liposomes and carbon nanotubes. The review also focuses on the effective utilization of receptor-based targeted delivery systems for the management of cancer in effective ways by minimizing the drug-associated side effects and improving the therapeutic efficacy of developed nano-architectures.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW We provide new viewpoints of hormonal control of benign prostatic hyperplasia (BPH). The latest treatment findings with 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride, refined indications, efficacy, and safety are discussed and compared. We also discuss potential new 5-ARIs and other hormonal treatments. RECENT FINDINGS Finasteride and dutasteride have equal efficacy and safety for the treatment and prevention of progression of BPH. 5-ARIs are especially recommended for prostates greater than 40 ml and PSA greater than 1.5 ng/ml. Combination therapy is the treatment of choice in these patients, but with prostate volume greater than 58 ml or International Prostate Symptom Score of at least 20, combinations have no advantage over 5-ARI monotherapy. Updates on the recent developments on BPH therapy with luteinizing hormone-releasing hormone (LHRH) antagonist are also reviewed and analyzed. Preclinical studies suggest that growth hormone-releasing hormone (GHRH) antagonists effectively shrink experimentally enlarged prostates alone or in combination with LHRH antagonists. SUMMARY New 5-ARIs seem to be the promising agents that need further study. Preclinical studies revealed that GHRH and LHRH antagonists both can cause a reduction in prostate volume. Recent data indicate that prostate shrinkage is induced by the direct inhibitory action of GHRH and of LHRH antagonists exerted through prostatic receptors. The adverse effects of 5ARIs encourage alternative therapy.
Collapse
|
26
|
Salvador JAR, Carvalho JFS, Neves MAC, Silvestre SM, Leitão AJ, Silva MMC, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, 3000-508, Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
27
|
Takayama KI, Inoue S. Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 2013; 20:756-68. [DOI: 10.1111/iju.12146] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/21/2013] [Indexed: 02/06/2023]
|
28
|
Dávola ME, Alonso F, Cabrera GM, Ramírez JA, Barquero AA. Sterol analogues with diamide side chains interfere with the intracellular localization of viral glycoproteins. Biochem Biophys Res Commun 2012; 427:107-12. [PMID: 22982541 DOI: 10.1016/j.bbrc.2012.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/01/2022]
Abstract
The need to develop novel antiviral agents encouraged us to assess the antiviral activity of synthetic sterol analogues with a diamide side chains. Cytotoxicity and antiviral activity of a family of azasterol previously synthesized was evaluated against herpes simplex virus 1 (HSV-1) (KOS and B2006) and vesicular stomatitis virus (VSV). This family of compounds was extended by the synthesis of novel analogs using an Ugi multicomponent reaction and their ability to inhibit viral multiplication was also evaluated. The results show that some of the compounds tested exert an antiviral activity. Besides, the effect of the azasterols on the intracellular localization of viral glycoproteins was examined. Strikingly, alteration on the glycoprotein D (gD) of HSV-1 fluorescence pattern was observed with both the antiherpetic compounds and the inactive azasterols.
Collapse
Affiliation(s)
- María Eugenia Dávola
- Laboratorio de Virología, Departamento de Química Biológica and IQUIBICEN (CONICET-Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 4, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:402-16. [DOI: 10.1097/spc.0b013e3283573126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Kapp FG, Sommer A, Kiefer T, Dölken G, Haendler B. 5-alpha-reductase type I (SRD5A1) is up-regulated in non-small cell lung cancer but does not impact proliferation, cell cycle distribution or apoptosis. Cancer Cell Int 2012; 12:1. [PMID: 22257483 PMCID: PMC3269976 DOI: 10.1186/1475-2867-12-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 01/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the most frequent malignancies and has a high mortality rate due to late detection and lack of efficient treatments. Identifying novel drug targets for this indication may open the way for new treatment strategies. Comparison of gene expression profiles of NSCLC and normal adjacent tissue (NAT) allowed to determine that 5-alpha-reductase type I (SRD5A1) was up-regulated in NSCLC compared to NAT. This raised the question whether SRD5A1 was involved in sustained proliferation and survival of NSCLC. METHODS siRNA-mediated silencing of SRD5A1 was performed in A549 and NCI-H460 lung cancer cell lines in order to determine the impact on proliferation, on distribution during the different phases of the cell cycle, and on apoptosis/necrosis. In addition, lung cancer cell lines were treated with 4-azasteroids, which specifically inhibit SRD5A1 activity, and the effects on proliferation were measured. Statistical analyses using ANOVA and post-hoc Tamhane-T2-test were performed. In the case of non-parametric data, the Kruskal-Wallis test and the post-hoc Mann-Whitney-U-test were used. RESULTS The knock-down of SRDA51 expression was very efficient with the SRD5A1 transcripts being reduced to 10% of control levels. Knock-down efficiency was furthermore confirmed at the protein level. However, no effect of SRD5A1 silencing was observed in the proliferation assay, the cell cycle analysis, and the apoptosis/necrosis assay. Treatment of lung cancer cell lines with 4-azasteroids did not significantly inhibit proliferation. CONCLUSIONS In summary, the results suggest that SRD5A1 is not a crucial enzyme for the sustained proliferation of NSCLC cell lines.
Collapse
Affiliation(s)
- Friedrich G Kapp
- Global Drug Discovery, Bayer HealthCare, Müllerstr, 178, 13342 Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Shrivastava A, Gupta VB. Various treatment options for benign prostatic hyperplasia: A current update. J Midlife Health 2012; 3:10-9. [PMID: 22923974 PMCID: PMC3425142 DOI: 10.4103/0976-7800.98811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In benign prostatic hyperplasia (BPH) there will be a sudden impact on overall quality of life of patient. This disease occurs normally at the age of 40 or above and also is associated with sexual dysfunction. Thus, there is a need of update on current medications of this disease. The presented review provides information on medications available for BPH. Phytotherapies with some improvements in BPH are also included. Relevant articles were identified through a search of the English-language literature indexed on MEDLINE, PUBMED, Sciencedirect and the proceedings of scientific meetings. The search terms were BPH, medications for BPH, drugs for BPH, combination therapies for BPH, Phytotherapies for BPH, Ayurveda and BPH, BPH treatments in Ayurveda. Medications including watchful waitings, Alpha one adrenoreceptor blockers, 5-alpha reductase inhibitors, combination therapies including tamsulosin-dutasteride, doxazosin-finasteride, terazosin-finasteride, tolterodine-tamsulosin and rofecoxib-finasteride were found. Herbal remedies such as Cernilton, Saxifraga stolonifera, Zi-Shen Pill (ZSP), Orbignya speciosa, Phellodendron amurense, Ganoderma lucidum, Serenoa Repens, pumpkin extract and Lepidium meyenii (Red Maca) have some improvements on BPH are included. Other than these discussions on Ayurvedic medications, TURP and minimally invasive therapies (MITs) are also included. Recent advancements in terms of newly synthesized molecules are also discussed. Specific alpha one adrenoreceptor blockers such as tamsulosin and alfuzosin will remain preferred choice of urologists for symptom relief. Medications with combination therapies are still needs more investigation to establish as preference in initial stage for fast symptom relief reduced prostate growth and obviously reduce need for BPH-related surgery. Due to lack of proper evidence Phytotherapies are not gaining much advantage. MITs and TURP are expensive and are rarely supported by healthcare systems.
Collapse
Affiliation(s)
| | - Vipin B. Gupta
- Department of Pharmaceutics, B. R. Nahata College of Pharmacy, Mandsaur, Madhya Pradesh, India
| |
Collapse
|
32
|
Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog 2011; 10:20. [PMID: 21886458 PMCID: PMC3162670 DOI: 10.4103/1477-3163.83937] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) signaling axis plays a critical role in the development, function and homeostasis of the prostate. The classical action of AR is to regulate gene transcriptional processes via AR nuclear translocation, binding to androgen response elements on target genes and recruitment of, or crosstalk with, transcription factors. Prostate cancer initiation and progression is also uniquely dependent on AR. Androgen deprivation therapy remains the standard of care for treatment of advanced prostate cancer. Despite an initial favorable response, almost all patients invariably progress to a more aggressive, castrate-resistant phenotype. Considerable evidence now supports the concept that development of castrate-resistant prostate cancer (CRPC) is causally related to continued transactivation of AR. Understanding the critical events and complexities of AR signaling in the progression to CRPC is essential in developing successful future therapies. This review provides a synopsis of AR structure and signaling in prostate cancer progression, with a special focus on recent findings on the role of AR in CRPC. Clinical implications of these findings and potential directions for future research are also outlined.
Collapse
Affiliation(s)
- Peter E Lonergan
- Department of Urology, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | |
Collapse
|