1
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Stimulatory effects of vasopressin on progesterone production and BMP signaling by ovarian granulosa cells. Biochem Biophys Res Commun 2023; 667:132-137. [PMID: 37224632 DOI: 10.1016/j.bbrc.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to clarify the effects of arginine vasopressin (AVP) on ovarian steroid production and its functional relationship to the ovarian bone morphogenetic protein (BMP) system. The results showed that AVP treatment significantly increased gonadotropin- and forskolin-induced progesterone synthesis by primary culture of rat granulosa cells and human granulosa cells, respectively. In contrast, estradiol production was not significantly affected by AVP. Treatment with AVP significantly increased forskolin-induced cAMP synthesis by human granulosa cells and mRNA levels of the progesterogenic enzymes CYP11A1 and HSD3B2 in the cells. On the other hand, AVP also enhanced BMP-15-induced phosphorylation of SMAD1/5/9 and ID1 transcription. It was further revealed that the expression levels of BMP receptors, including ALK3, ALK6 and BMPR2, were upregulated by AVP. Collectively, the results indicate that AVP stimulates progesterone production via the cAMP-PKA pathway with upregulation of BMP signaling that inhibits progesterone production, which may lead to fine adjustment of progesterone biosynthesis by granulosa cells.
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
2
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Oxytocin enhances progesterone production with upregulation of BMP-15 activity by granulosa cells. Biochem Biophys Res Commun 2023; 646:103-109. [PMID: 36708595 DOI: 10.1016/j.bbrc.2023.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
To elucidate the reproductive role of oxytocin (OXT) in ovarian steroidogenesis and its functional interaction with bone morphogenetic proteins (BMPs), the effects of OXT on ovarian steroidogenesis were investigated by utilizing primary culture of rat granulosa cells and human granulosa KGN cells. Here we revealed that the OXT receptor was expressed in both rat and human granulosa cells and that OXT treatment significantly increased follicle-stimulating hormone (FSH)- and forskolin (FSK)-induced progesterone production, but not estradiol production, by rat and human granulosa cells, respectively. In accordance with the effects of OXT on progesterone production, OXT enhanced mRNA expression of CYP11A1 and HSD3B2 induced by FSK in human granulosa cells. Of note, OXT enhanced the phosphorylation of SMAD1/5/9 and the transcription of ID1 induced by BMP-15, but not those induced by BMP-6, in human granulosa cells. It was also revealed that OXT treatment upregulated the expression of BMPR2, a crucial type-II receptor of BMP-15, and enhanced the BMP-15-induced expression of inhibitory SMAD6 by human granulosa cells. Collectively, it was shown that OXT accelerates ovarian progesterone synthesis with upregulation of BMP-15 activity, leading to a fine-tuning of ovarian steroidogenesis (186 words).
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
3
|
Effects of N-Acetylcysteine on the Proliferation, Hormone Secretion Level, and Gene Expression Profiles of Goat Ovarian Granulosa Cells. Genes (Basel) 2022; 13:genes13122306. [PMID: 36553574 PMCID: PMC9778279 DOI: 10.3390/genes13122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this paper was to investigate the effects of N-acetylcysteine (NAC) on the proliferation, hormone secretion, and mRNA expression profiles of ovarian granulosa cells (GCs) in vitro. A total of 12 ovaries from 6 follicular-stage goats were collected for granulosa cell extraction. The optimum concentration of NAC addition was determined to be 200 μM via the Cell Counting Kit 8 (CCK-8) method. Next, GCs were cultured in a medium supplemented with 200 μM NAC (200 μM NAC group) and 0 μ M NAC (control group) for 48 h. The effects of 200 μM NAC on the proliferation of granulosa cells and hormones were studied by 5-ethynyl-2'-deoxyuridine (EdU) assay and enzyme-linked immunosorbent assay (ELISA). mRNA expression was analyzed by transcriptome sequencing. The results indicate that 200 μM NAC significantly increased cell viability and the proportion of cells in the S phase but promoted hormone secretion to a lesser degree. Overall, 122 differentially expressed genes (DEGs) were identified. A total of 51 upregulated and 71 downregulated genes were included. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the most DEGs were enriched in terms of cell growth regulation, cell growth, neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the cAMP-signaling pathway, and the Wnt-signaling pathway. Seven genes related to granulosa cell proliferation were screened, IGFBP4, HTRA4, SST, SSTR1, WISP1, DAAM2, and RSPO2. The above results provide molecular theoretical support for NAC as a feed additive to improve follicle development and improve reproductive performance in ewes.
Collapse
|
4
|
Wang Y, Guo B, Guo Y, Qi N, Lv Y, Ye Y, Huang Y, Long X, Chen H, Su C, Zhang L, Zhang Q, Li M, Liao J, Yan Y, Mao X, Zeng Y, Jiang J, Chen Z, Guo Y, Gao S, Cheng J, Jiang Y, Mo Z. A spatiotemporal steroidogenic regulatory network in human fetal adrenal glands and gonads. Front Endocrinol (Lausanne) 2022; 13:1036517. [PMID: 36465633 PMCID: PMC9713933 DOI: 10.3389/fendo.2022.1036517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human fetal adrenal glands produce substantial amounts of dehydroepiandrosterone (DHEA), which is one of the most important precursors of sex hormones. However, the underlying biological mechanism remains largely unknown. Herein, we sequenced human fetal adrenal glands and gonads from 7 to 14 gestational weeks (GW) via 10× Genomics single-cell transcriptome techniques, reconstructed their location information by spatial transcriptomics. Relative to gonads, adrenal glands begin to synthesize steroids early. The coordination among steroidogenic cells and multiple non-steroidogenic cells promotes adrenal cortex construction and steroid synthesis. Notably, during the window of sexual differentiation (8-12 GW), key enzyme gene expression shifts to accelerate DHEA synthesis in males and cortisol synthesis in females. Our research highlights the robustness of the action of fetal adrenal glands on gonads to modify the process of sexual differentiation.
Collapse
Affiliation(s)
- Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingqian Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yajie Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Nana Qi
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yufang Lv
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Huang
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyang Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- School of Public Health of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongfei Chen
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Zhang
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Minxi Li
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yunkun Yan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuai Gao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| |
Collapse
|
5
|
Quan Q, Zheng Q, Ling Y, Fang F, Chu M, Zhang X, Liu Y, Li W. Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq. ACTA ACUST UNITED AC 2019; 26:3. [PMID: 31080783 PMCID: PMC6503366 DOI: 10.1186/s40709-019-0095-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Background A multitude of genes tightly regulate ovarian follicular development and hormone secretion. These complex and coordinated biological processes are altered during pregnancy. In order to further understand the regulatory role of these genes during pregnancy, it is important to screen the differentially expressed genes (DEGs) in the ovaries of pregnant and nonpregnant mammals. To detect the genes associated with the development of pregnancy in goats, DEGs from the ovaries from pregnant and nonpregnant Anhui white goats (pAWGs and nAWGs, respectively) were analyzed using RNA sequencing technology (RNA-Seq). Results In this study, 13,676,394 and 13,549,560 clean reads were generated from pAWGs and nAWGs, respectively, and 1724 DEGs were identified between the two libraries. Compared with nAWGs, 1033 genes were upregulated and 691 genes were downregulated in pAWGs, including PGR, PRLR, STAR and CYP19A1, which play important roles in goat reproduction. Gene Ontology analysis showed that the DEGs were enriched for 49 functional GO terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that 397 DEGs were significantly enriched in 13 pathways, including “cell cycle”, “cytokine–cytokine receptor interaction” and “steroid biosynthesis”, suggesting that the genes may be associated with cell cycle regulation, follicular development and hormone secretion to regulate the reproduction process. Additionally, quantitative real-time PCR was used to verify the reliability of the RNA-Seq data. Conclusions The data obtained in this work enrich the genetic resources of goat and provide a further understanding of the complex molecular regulatory mechanisms occurring during the development of pregnancy and reproduction in goats. The DEGs screened in this study may play an important role in follicular development and hormone secretion and they would provide scientific basis for related research in the future. Electronic supplementary material The online version of this article (10.1186/s40709-019-0095-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Quan
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,3College of Economy and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Qi Zheng
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yinghui Ling
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Fugui Fang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Mingxing Chu
- 4Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193 China
| | - Xiaorong Zhang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yong Liu
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| | - Wenyong Li
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| |
Collapse
|
6
|
Treatment of female rhesus macaques with a somatostatin receptor antagonist that increases oocyte fertilization rates without affecting post-fertilization development outcomes. J Assist Reprod Genet 2018; 36:229-239. [PMID: 30430314 DOI: 10.1007/s10815-018-1369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To determine the effects of PGL1001, a somatostatin receptor isoform-2 (SSTR-2) antagonist, on ovarian follicle development, oocyte fertilization, and subsequent embryo developmental potential in the rhesus macaque. METHODS Cycling female rhesus macaques (N = 8) received vehicle through one menstrual (control) cycle, followed by daily injections of PGL1001, a SSTR-2 antagonist, for three menstrual (treatment) cycles. Main endpoints include overall animal health and ovarian hormones (e.g., estradiol [E2], progesterone [P4], and anti-Müllerian hormone [AMH]), ovarian circumference, numbers of oocytes and their maturation status following controlled ovarian stimulation (COS), as well as oocyte fertilization and subsequent blastocyst rates that were assessed in control and PGL1001 treatment cycles. Circulating PGL1001 levels were assessed at baseline as well as 6, 60, and 90 days during treatment. RESULTS PGL1001 treatment did not impact overall animal health, menstrual cycle length, or circulating levels of ovarian hormones (E2, P4, and AMH) in comparison to vehicle treatment during natural cycles. PGL1001 treatment increased (p ˂ 0.05) ovarian circumference and the day 8 to day 1 ratio of AMH levels (p ˂ 0.05) during a COS protocol, as well as oocyte fertilization rates compared to the vehicle treatment interval. Blastocyst development rates were not significantly different between vehicle and PGL1001 treatment groups. CONCLUSION Prolonged treatment with PGL1001 appears to be safe and does not affect rhesus macaque general health, menstrual cycle length, or ovarian hormone production. Interestingly, PGL1001 treatment increased the fertilization rate of rhesus macaque oocytes collected following ovarian stimulation.
Collapse
|
7
|
Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res 2018; 375:743-754. [DOI: 10.1007/s00441-018-2947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
|
8
|
Otsuka F. Modulation of bone morphogenetic protein activity by melatonin in ovarian steroidogenesis. Reprod Med Biol 2018; 17:228-233. [PMID: 30013422 PMCID: PMC6046534 DOI: 10.1002/rmb2.12089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Melatonin regulates circadian and seasonal rhythms and the activities of hormones and cytokines that are expressed in various tissues, including the ovary, in which melatonin receptors are expressed. In the ovary, follicular growth occurs as a result of complex interactions between pituitary gonadotropins and autocrine and paracrine factors, including bone morphogenetic proteins (BMPs) that are expressed in the ovary. METHODS The effects of melatonin and BMPs on steroidogenesis were examined by using the primary cultures of rat granulosa cells. MAIN FINDINGS RESULTS It was shown that melatonin has antagonistic effects on BMP-6 actions in the granulosa cells, suggesting that melatonin is likely to contribute to balancing the biological activity of endogenous BMPs that maintain progesterone production and luteinization in the growing follicles. Similar interactions between melatonin and BMP-smad signaling also were shown in the mechanism of controlling ovarian steroidogenesis by other ligands. CONCLUSION A new role of melatonin in the regulation of endocrine homeostasis in relation to BMP activity is introduced in this review.
Collapse
Affiliation(s)
- Fumio Otsuka
- Department of General MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
9
|
Nishiyama Y, Hasegawa T, Fujita S, Iwata N, Nagao S, Hosoya T, Inagaki K, Wada J, Otsuka F. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells. J Steroid Biochem Mol Biol 2018; 178:82-88. [PMID: 29129645 DOI: 10.1016/j.jsbmb.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
The effects of incretins on ovarian steroidogenesis have not been clarified. In this study, we investigated the effects of incretins, including GIP and GLP-1, on ovarian steroidogenesis using rat primary granulosa cells. Treatment with incretins significantly suppressed progesterone synthesis in the presence of FSH, and the effect of GIP was more potent than that of GLP-1. In contrast, incretins had no significant effect on estrogen synthesis by rat granulosa cells. In accordance with the effects of incretins on steroidogenesis, GIP and GLP-1 suppressed the expression of progesterogenic factors and enzymes, including StAR, P450scc, 3βHSD, but not P450arom, and cellular cAMP synthesis induced by FSH. In addition, incretins moderately increased FSHR mRNA expression in granulosa cells. Of note, treatment with GIP, but not treatment with GLP-1, augmented Smad1/5/8 phosphorylation and transcription of the BMP target gene Id-1 induced by BMP-6 stimulation, suggesting that GIP upregulates BMP receptor signaling that can inhibit FSH-induced progesterone synthesis in rat granulosa cells. On the other hand, BMP-6 treatment suppressed the expression of GIP receptor but not that of GLP-1 receptor. Expression of the BMP type-I receptor ALK-3 was upregulated by treatment with GIP and GLP-1 and that of ALK-6 was also increased by GIP, while inhibitory Smad6 expression was impaired by GIP and GLP-1 in rat granulosa cells. Collectively, the results indicate that incretins, particularly GIP, impair FSH-induced progesterone production, at least in part, by upregulating BMP signaling in rat granulosa cells. The modulatory effects of incretins on endogenous BMP activity may be applicable to treatment of dysregulated steroidogenesis such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Yuki Nishiyama
- Departments of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Toru Hasegawa
- Departments of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Shiho Fujita
- Departments of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Nahoko Iwata
- Departments of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Satoko Nagao
- Departments of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Takeshi Hosoya
- Departments of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Kenichi Inagaki
- Departments of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Jun Wada
- Departments of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Departments of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.
| |
Collapse
|
10
|
Hosoya T, Otsuka F, Nakamura E, Terasaka T, Inagaki K, Tsukamoto-Yamauchi N, Hara T, Toma K, Komatsubara M, Makino H. Regulatory role of BMP-9 in steroidogenesis by rat ovarian granulosa cells. J Steroid Biochem Mol Biol 2015; 147:85-91. [PMID: 25527306 DOI: 10.1016/j.jsbmb.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
BMPs expressed in the ovary differentially regulate steroidogenesis by granulosa cells. BMP-9, a circulating BMP, is associated with cell proliferation, apoptosis and differentiation in various tissues. However, the effects of BMP-9 on ovarian function have yet to be elucidated. Here we investigated BMP-9 actions on steroidogenesis using rat primary granulosa cells. BMP-9 potently suppressed FSH-induced progesterone production, whereas it did not affect FSH-induced estradiol production by granulosa cells. The effects of BMP-9 on FSH-induced steroidogenesis were not influenced by the presence of oocytes. FSH-induced cAMP synthesis and FSH-induced mRNA expression of steroidogenic factors, including StAR, P450scc, 3βHSD2 and FSHR, were suppressed by treatment with BMP-9. BMP-9 mRNA expression was detected in granulosa cells but not in oocytes. BMP-9 readily activated Smad1/5/8 phosphorylation and Id-1 transcription in granulosa cells. Analysis using ALK inhibitors indicated that BMP-9 actions were mediated via type-I receptors other than ALK-2, -3 and -6. Furthermore, experiments using extracellular domains (ECDs) for BMP type-I and -II receptor constructs revealed that the effects of BMP-9 were reversed by ECDs for ALK-1 and BMPRII. Thus, the functional receptors for BMP-9 in granulosa cells were most likely to be the complex of ALK-1 and BMPRII. Collectively, the results of the present study showed that BMP-9 can affect luteinization and that there are two possible sources of BMP-9, serum and granulosa cells in the ovary.
Collapse
Affiliation(s)
- Takeshi Hosoya
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| | - Eri Nakamura
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kenichi Inagaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Naoko Tsukamoto-Yamauchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Takayuki Hara
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kishio Toma
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Motoshi Komatsubara
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Hirofumi Makino
- Okayama University Hospital, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
11
|
Riaz H, Dong P, Shahzad M, Yang L. Constitutive and follicle-stimulating hormone-induced action of somatostatin receptor-2 on regulation of apoptosis and steroidogenesis in bovine granulosa cells. J Steroid Biochem Mol Biol 2014; 141:150-9. [PMID: 24530462 DOI: 10.1016/j.jsbmb.2014.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/25/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
In the present study, we employed primary bovine culture of granulosa cells (GCs) as a cellular model to study the potential involvement of somatostatin receptor 2 (SSTR2) in ovarian function. The results showed that bovine GCs expressed SST2 receptor and further found that SSTR2 was possibly regulated by follicle-stimulating hormone (FSH), as a significant increase in protein level of SSTR2 was observed in FSH-treated GCs. For further analysis, endogenous SSTR2 expression was disrupted using small inhibitory RNA (siRNA) and the efficacy of differential silencing of endogenous SSTR2 expression was measured both at transcriptional and translational levels. Transient blockage of SSTR2 evidenced its constitutive action on GCs, as it significantly increased level of cAMP (2.4-folds) and basal progesterone production (∼2-fold, P<0.05) with significant increase (P<0.05) in mRNA levels of StAR and P450ssc without altering estradiol concentration and aromatase mRNA expression. Furthermore, silencing of SSTR2 reduced GCs apoptosis (52.5%, P<0.05) and increased cell proliferation, which was further corroborated by up-regulation in protein expressions of B-cell leukemia/lymphoma 2 (Bcl-2), inhibition of caspase3 and mRNA level of bcl2-associated-X protein (Bax). These results provide evidence that SSTR2 subtype controls GCs apoptosis, proliferation and hormonal secretions through selective constitutive action, independently of somatostatin (SST). Given the local inhibitory actions of SSTR2 on the gonads, we further found that apoptosis in ssRNAi-2 transfected cells decreased (6.8% vs 1.9%, P<0.05) more strongly on FSH treatment. Apoptotic protein expressions and steroid hormone mRNA levels were correlated with a relative decrease in apoptosis and increase in progesterone production. Our results suggest that SSTR2 may play a crucial role as a local inhibitor of FSH action on GCs apoptosis and steroidogenesis.
Collapse
Affiliation(s)
- Hasan Riaz
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ping Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Animal Sciences, Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
12
|
Ophir L, Yung Y, Maman E, Rubinstein N, Yerushalmi GM, Haas J, Barzilay E, Hourvitz A. Establishment and validation of a model for non-luteinized human mural granulosa cell culture. Mol Cell Endocrinol 2014; 384:165-74. [PMID: 24508664 DOI: 10.1016/j.mce.2014.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 11/16/2022]
Abstract
Cell culture techniques of human mural granulosa cells (MGCs) serve as a major in vitro tool. However, the use of luteinized MGCs has major limitations due to their luteinized state. Our aim was to establish a standardized protocol for the culture of MGCs as a model for different stages of folliculogenesis. We showed that early-non-luteinized, preovulatory-non-luteinized and luteal-MGCs have distinct gene expression pattern. After 4 days of incubation of luteinized-MGCs, ovulatory genes mRNA's achieve expression levels similar to the early non-luteinized follicles. FSH stimulation for 48 h of these 4 days cultured MGCs showed ovulatory genes mRNA's expression similar to the pre-ovulatory non-luteinized follicles. These FSH-stimulated cells responded to hCG stimulation in a pattern similar to the response of pre-ovulatory follicles. This novel model may provide a standardized research tool for delineation of the molecular processes occurring during the latter stages of follicular development in the human ovary.
Collapse
Affiliation(s)
- L Ophir
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Yung
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - E Maman
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - N Rubinstein
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G M Yerushalmi
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Haas
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Barzilay
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Hourvitz
- IVF Unit and Fertility Research Laboratory, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|