1
|
Jurca CM, Iuhas O, Kozma K, Petchesi CD, Zaha DC, Bembea M, Jurca S, Paul C, Jurca AD. Effects of Burosumab Treatment on Two Siblings with X-Linked Hypophosphatemia. Case Report and Literature Review. Genes (Basel) 2022; 13:genes13081392. [PMID: 36011303 PMCID: PMC9407333 DOI: 10.3390/genes13081392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked hypophosphatemia (XLH) or vitamin D-resistant rickets (MIM#307800), is a monogenic disorder with X-linked inheritance. It is caused by mutations present in the Phosphate Regulating Endopeptidase Homolog X-Linked (PHEX) gene responsible for the degradation of the bone-derived hormone fibroblast growth factor 23 (FGF23) into inactive fragments, but the entire mechanism is currently unclear. The inactivation of the gene prevents the degradation of FGF23, causing increased levels of FGF23, which leads to decreased tubular reabsorbtion of phosphorus. Clinical aspects are growth delay, limb deformities, bone pain, osteomalacia, dental anomalies, and enthesopathy. Laboratory evaluation shows hypophosphatemia, elevated alkaline phosphatase (ALP), and normal serum calcium levels, whereas parathormone (PTH) may be normal or increased and FGF23 greatly increased. Conventional treatment consists of administration of oral phosphate and calcitriol. Treatment with Burosumab, a monoclonal antibody that binds to FGF23, reducing its activity, was approved in 2018. Methods. We describe a case of two siblings, a girl and a boy, diagnosed with XLH, monitored by the Genetic Department of the County Emergency Clinical Hospital since 2019. The clinical picture is suggestive for XLH, both siblings exhibiting short stature, lower limb curvature, bone pain, marked walking weakness, and fatigue. Radiological aspects showed marked deformity of the lower limbs: genu varum in the girl, genu varum and valgum in the boy. Laboratory investigations showed hypophosphathemia, hyperphosphaturia, elevated ALP, normal PTH, and highly increased FGF23 in both. DNA analysis performed on the two siblings revealed a nonsense mutation in exone 5 of the PHEX gene: NM_000444.6(PHEX):c.565C > T (p.Gln189Ter). Results. At the age of 13½ on 7 June 2021, the two children started treatment with Burosumab in therapeutic doses and were monitored clinically and biochemically at regular intervals according to the protocol established by the Endocrinology Commission of the Romanian Health Ministry. Conclusions. The first results of the Burosumab treatment in the two siblings are extremely encouraging and suggest a favorable long-term evolution under this treatment.
Collapse
Affiliation(s)
- Claudia Maria Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Oana Iuhas
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Kinga Kozma
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Codruta Diana Petchesi
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Correspondence:
| | - Dana Carmen Zaha
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Marius Bembea
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Sanziana Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Daniel Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| |
Collapse
|
2
|
Huang C, Zhang C, Yang P, Chao R, Yue Z, Li C, Guo J, Li M. Eldecalcitol Inhibits LPS-Induced NLRP3 Inflammasome-Dependent Pyroptosis in Human Gingival Fibroblasts by Activating the Nrf2/HO-1 Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4901-4913. [PMID: 33223823 PMCID: PMC7671541 DOI: 10.2147/dddt.s269223] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Purpose Periodontitis is a major chronic oral disease that is accelerated by activation of the NLRP3 inflammasome and the resulting pyroptosis. According to recent studies, active vitamin D and its analogs have been reported to have great anti-inflammatory effects. However, the anti-inflammatory mechanism of a newly found vitamin D analog, eldecalcitol (ED-71), is still unclear. This study investigates whether ED-71 could protect human gingival fibroblasts (HGFs) from LPS-induced pyroptosis and, if so, determine its underlying mechanism. Methods After HGFs were treated with LPS alone or with LPS and ED-71, their viability was measured by CCK8 assay. The degrees of inflammation and pyroptosis were measured via LDH assay, H2O2 assay, fluorescent staining, flow cytometry, and Western blots. Intracellular ROS, Hoechst 33,342, and PI stains were assessed with a fluorescence microscope. ROS inhibitor NAC, NLRP3 inhibitor MCC950, and Nrf2 inhibitor ML385 were added to further clarify the mechanism. Results LPS induced cytotoxicity in HGFs, as shown by CCK8 assay. LPS also increased intracellular ROS, H2O2 levels, release of LDH, and expression of the pyroptosis-related proteins NLRP3, caspase-1, and IL-1β. NAC and MCC950 reduced LPS-induced NLRP3, caspase-1, and IL-1β. Pretreatment with ED-71 effectively inhibited the LPS-induced pyroptosis and was associated with activation of the Nrf2/HO-1 signaling pathway. This beneficial effect of ED-71 was suppressed by ML385. Conclusion This study demonstrates the therapeutic effect of ED-71 on LPS-induced NLRP3 inflammasome-dependent pyroptosis in HGFs and further reveals that ED-71 can inhibit pyroptosis by activating the Nrf2/HO-1 pathway. Our results thus suggest that ED-71 is a potential candidate for the treatment of periodontitis.
Collapse
Affiliation(s)
- Cancan Huang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Chaotao Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Rui Chao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Ziqi Yue
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Congshan Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Jie Guo
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, People's Republic of China
| |
Collapse
|
3
|
|
4
|
Kondo S, Kakihata H, Nishida Y, Furuno Y, Kobayashi Y, Tabata H, Nomura M. The safety and effectiveness profile of eldecalcitol in a prospective, post-marketing observational study in Japanese male patients with osteoporosis. J Bone Miner Metab 2019. [PMID: 29532248 DOI: 10.1007/s00774-018-0915-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We conducted a post-marketing observational study to investigate the safety and effectiveness of eldecalcitol for the treatment of osteoporosis in a Japanese clinical setting. The observation period was 12 months for women and 36 months for men. The final results for the female patients have already been published. In this article, the final results for the male patients are reported. A total of 470 male osteoporosis patients were enrolled. The safety analysis set included 431 patients (mean age, 76.8 years; mean ± SD follow-up period, 631.0 ± 450.3 days), and 175 patients continued treatment throughout the 3-year observational period. Adverse drug reactions (ADRs) were reported in 28 patients (6.49%); the most common ADRs were hypercalcemia (1.16%) and renal impairment (1.16%). Serious ADRs were reported in 5 patients (1.16%). Mean serum calcium was within the normal range throughout the observation period. The cumulative incidence of new vertebral and nonvertebral fractures at 36 months, estimated by Kaplan-Meier analysis, was 10.23 and 4.06%, respectively. At the last observation, mean lumbar spine bone mineral density was 3.49% higher (P < 0.0001) than at baseline, and levels of the bone turnover markers BAP and TRACP-5b were reduced (-14.64%; P = 0.0009, and - 29.51%; P < 0.0001, respectively). In conclusion, the safety and effectiveness of eldecalcitol for the treatment of Japanese male osteoporosis patients was confirmed in clinical practice. Careful monitoring of serum calcium and estimated glomerular filtration rate, both before and during treatment, is necessary to minimize the risk of hypercalcemia and renal impairment while maximizing the effectiveness of eldecalcitol.
Collapse
Affiliation(s)
- Satoshi Kondo
- Medical Science Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan.
| | - Hiroyuki Kakihata
- Real World Data Science Department, Drug Safety Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yosuke Nishida
- Real World Data Science Department, Drug Safety Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yuko Furuno
- PV & Safety Science Department, Drug Safety Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yumiko Kobayashi
- Pharmacovigilance Department, Administration Division, Taisho Toyama Pharmaceutical Co., Ltd, 3-25-1 Takada, Toshima-ku, Tokyo, 170-8635, Japan
| | - Hidehiro Tabata
- Risk Communication Department, Drug Safety Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Makoto Nomura
- Risk Communication Department, Drug Safety Division, Chugai Pharmaceutical Co., Ltd, 1-1 Nihonbashi-Muromachi, 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| |
Collapse
|
5
|
Kaneko I, Segawa H, Ikuta K, Hanazaki A, Fujii T, Tatsumi S, Kido S, Hasegawa T, Amizuka N, Saito H, Miyamoto KI. Eldecalcitol Causes FGF23 Resistance for Pi Reabsorption and Improves Rachitic Bone Phenotypes in the Male Hyp Mouse. Endocrinology 2018; 159:2741-2758. [PMID: 29878089 DOI: 10.1210/en.2018-00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
X-linked hypophosphatemia (XLH), the most common form of inheritable rickets, is caused by inactivation of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and leads to fibroblast growth factor (FGF) 23-dependent renal inorganic phosphate (Pi) wasting. In the present study, we investigated whether maintaining Pi homeostasis with a potent vitamin D3 analog, eldecalcitol [1α,25-dihydroxy-2β-(3-hydroxypropyloxy) vitamin D3; ED71], could improve hypophosphatemic rickets in a murine model of XLH, the Hyp mouse. Vehicle, ED71, or 1,25-dihydroxyvitamin D was subcutaneously injected five times weekly in wild-type (WT) and Hyp mice for 4 weeks, from 4 to 8 weeks of age. Injection of ED71 into WT mice suppressed the synthesis of renal 1,25-dihydroxyvitamin D and promoted phosphaturic activity. In contrast, administration of ED71 to Hyp mice completely restored renal Pi transport and NaPi-2a protein levels, although the plasma-intact FGF23 levels were further increased. In addition, ED71 markedly increased the levels of the scaffold proteins, renal sodium-hydrogen exchanger regulatory factor 1, and ezrin in the Hyp mouse kidney. Treatment with ED71 increased the body weight and improved hypophosphatemia, the bone volume/total volume, bone mineral content, and growth plate structure in Hyp mice. Thus, ED71 causes FGF23 resistance for phosphate reabsorption and improves rachitic bone phenotypes in Hyp mice. In conclusion, ED71 has opposite effects on phosphate homeostasis in WT and Hyp mice. Analysis of Hyp mice treated with ED71 could result in an additional model for elucidating PHEX abnormalities.
Collapse
Affiliation(s)
- Ichiro Kaneko
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shinsuke Kido
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
6
|
Abstract
Chronic kidney disease (CKD) patients with coexisting osteoporosis are becoming common. Many of the therapeutic agents used to treat osteoporosis are known to be affected by the renal function. It is generally thought that osteoporosis in G1 to G3 CKD patients can be treated as in non-CKD patients with osteoporosis. In stage 4 or more advanced CKD patients and CKD patients on dialysis with osteoporosis, however, bisphosphonates must be used with caution, bearing in mind the potential development of such disorders as adynamic bone disease. The use of vitamin D preparations in low doses is relatively safe. In postmenopausal women, raloxifene must be administered with caution. When using denosumab, the serum calcium concentrations should be monitored carefully to prevent the development of hypocalcemia, and active vitamin D preparations should be administered concomitantly. The present article provides an overview of the management of osteoporosis in CKD patients.
Collapse
Affiliation(s)
- Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Aiji Yajima
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Japan
| |
Collapse
|
7
|
Takano M, Yasuda K, Tohyama E, Higuchi E, Sakaki T, Kittaka A. Synthesis of the CYP24A1 major metabolite of 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-dihydroxyvitamin D 3. J Steroid Biochem Mol Biol 2017; 173:75-78. [PMID: 27923594 DOI: 10.1016/j.jsbmb.2016.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
Abstract
Previously, we found that 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-dihydroxyvitamin D3 (AH-1) showed higher osteocalcin promoter transactivation activity in human osteosarcoma (HOS) cells and a greater therapeutic effect on ovariectomized (OVX) rats for enhancing bone mineral density than those of 1α,25(OH)2D3 without hypercalcemic side effects in vivo. Although CYP24A1 catalyzes multi-step oxidations toward the CD-ring side chain of the active vitamin D3 [1α,25(OH)2D3], the CYP24A1-dependent metabolism of AH-1 tended to stop at the first step hydroxylation at the C24-position of AH-1. Interestingly, the metabolite 24-hydroxy-AH-1 [24(OH)AH-1] showed potent VDR binding affinity, and the new chiral center of the 24-position might be the 24R configuration compared with the process of the natural 1α,25(OH)2D3 catabolism. This time, (24R)-2α-[2-(tetrazol-2-yl)ethyl]-1α,24,25-trihydroxyvitamin D3 [(24R-OH)AH-1] was synthesized as a candidate for the major metabolite of AH-1 using the Trost Pd-mediated coupling reaction between A-ring and CD-ring precursors to identify the metabolite and evaluate its biological activity. We confirmed that the CYP24A1-dependent major metabolite of AH-1 was (24R-OH)AH-1 by HPLC analyses.
Collapse
Affiliation(s)
- Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Eri Tohyama
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Erika Higuchi
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Toshiyuki Sakaki
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan.
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Nakamichi Y, Udagawa N, Horibe K, Mizoguchi T, Yamamoto Y, Nakamura T, Hosoya A, Kato S, Suda T, Takahashi N. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorption. J Bone Miner Res 2017; 32:1297-1308. [PMID: 28177161 DOI: 10.1002/jbmr.3096] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Long-term treatment with active vitamin D [1α,25(OH)2 D3 ] and its derivatives is effective for increasing bone mass in patients with primary and secondary osteoporosis. Derivatives of 1α,25(OH)2 D3 , including eldecalcitol (ELD), exert their actions through the vitamin D receptor (VDR). ELD is more resistant to metabolic degradation than 1α,25(OH)2 D3 . It is reported that ELD treatment causes a net increase in bone mass by suppressing bone resorption rather than by increasing bone formation in animals and humans. VDR in bone and extraskeletal tissues regulates bone mass and secretion of osteotropic hormones. Therefore, it is unclear what types of cells expressing VDR preferentially regulate the vitamin D-induced increase in bone mass. Here, we examined the effects of 4-week treatment with ELD (50 ng/kg/day) on bone using osteoblast lineage-specific VDR conditional knockout (Ob-VDR-cKO) and osteoclast-specific VDR cKO (Ocl-VDR-cKO) male mice aged 10 weeks. Immunohistochemically, VDR in bone was detected preferentially in osteoblasts and osteocytes. Ob-VDR-cKO mice showed normal bone phenotypes, despite no appreciable immunostaining of VDR in bone. Ob-VDR-cKO mice failed to increase bone mass in response to ELD treatment. Ocl-VDR-cKO mice also exhibited normal bone phenotypes, but normally responded to ELD. ELD-induced FGF23 production in bone was regulated by VDR in osteoblast-lineage cells. These findings suggest that the vitamin D treatment-induced increase in bone mass is mediated by suppressing bone resorption through VDR in osteoblast-lineage cells. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, Nagano, Japan
| | | | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Takashi Nakamura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Akihiro Hosoya
- Department of Oral Histology, Matsumoto Dental University, Nagano, Japan
| | - Shigeaki Kato
- Jyoban Hospital, Tokiwa Foundation, Fukushima, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
9
|
Vitamin D, calcium homeostasis and aging. Bone Res 2016; 4:16041. [PMID: 27790378 PMCID: PMC5068478 DOI: 10.1038/boneres.2016.41] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk. Evidence is accumulating for an important role of calcium deficiency as the process of aging is associated with disturbed calcium balance. Vitamin D is the principal factor that maintains calcium homeostasis. Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly. In this article, an overview of our current understanding of vitamin D, its metabolism, and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented. In addition, mechanisms involved in age-related dysregulation of 1,25(OH)2D3 action, recommended daily doses of vitamin D and calcium, and the use of vitamin D analogs for the treatment of osteoporosis (which remains controversial) are reviewed. Elucidation of the molecular pathways of vitamin D action and modifications that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance.
Collapse
|
10
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|